Publications by year

<embed>

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

P.O. Box 12, Rehovot 76100, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2017
Yasur-Landau, D. ; Jaffe, C. L. ; Doron-Faigenboim, A. ; David, L. ; Baneth, G. Induction of allopurinol resistance in Leishmania infantum isolated from dogs. PLOS Neglected Tropical Diseases 2017, 11, 1-10. Publisher's VersionAbstract
Author summary Visceral leishmaniasis caused by the parasite Leishmania infantum is a neglected tropical disease transmitted from animal hosts to humans by sand fly bites. This potentially fatal disease affects thousands of people annually and threatens millions who live in disease risk areas. Domestic dogs are considered as the main reservoir of this parasite which can also cause a severe chronic canine disease. Allopurinol is the main drug used for long term treatment of this disease but it often does not eliminate infection in dogs. We have recently demonstrated that allopurinol resistant parasites can be isolated from naturally infected dogs that have developed clinical recurrence of disease during allopurinol treatment. In this study we aimed to see if resistance can be induced in susceptible parasite strains isolated from sick dogs by growing them in increasing drug concentrations under laboratory conditions. The changes in allopurinol susceptibility were measured and the impact of drug on parasite growth was monitored over 23 weeks. Induction of resistance was successful producing parasites 20-folds less susceptible to the drug. The pattern of change in drug susceptibility suggests that a genetic change is responsible for the increased resistance which is likely to mimic the formation of resistance in dogs.
Petit, J. ; David, L. ; Dirks, R. ; Wiegertjes, G. F. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?. Developmental & Comparative Immunology 2017, 75, 48 - 62. Publisher's VersionAbstract
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding.
Argov-Argaman, N. ; Mandel, D. ; Lubetzky, R. ; Kedem, M. H. ; Cohen, B. - C. ; Berkovitz, Z. ; Reifen, R. Human milk fatty acids composition is affected by maternal age. The Journal of Maternal-Fetal & Neonatal Medicine 2017, 30, 34-37. Publisher's VersionAbstract
AbstractHuman colostrums and transition milk were collected from women under the age of 37 years and women aged 37 years and older. Transition milk of the younger group had lower fat content and 10-fold higher concentrations of omega 6 FA, eicosadecanoic, and arachdonic acids. Gestational age affected the colostrum concentration of total fat and omega 3 and omega 6 FA composition only in the older group. We concluded that age may be a factor in the FA composition of human milk. This should be taken into account when planning diets for pregnant women of different ages.
Shefer-Weinberg, D. ; Sasson, S. ; Schwartz, B. ; Argov-Argaman, N. ; Tirosh, O. Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model. Clinical Nutrition Experimental 2017, 12, 37 - 49. Publisher's VersionAbstract
Summary Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of pathologies, ranging from hepatocellular steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. It has been suggested that fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFA) induce beneficial effects in NAFLD. However, n-3 PUFA are sensitive to peroxidation that generate free radicals and reactive aldehydes. We aimed at determining whether changing the tissue ratio of n-3 to n-6 PUFA may be beneficial or alternatively harmful to the etiology of NAFLD. The transgenic Fat-1 mouse model was used to determine whether n-3 PUFA positively or negatively affect the development of NAFLD. fat-1mice express the fat-1 gene of Caenorhabditis elegans, which encodes an n-3 fatty-acid desaturase that converts n-6 to n-3 fatty acids. Wild-type C57BL/6 mice served as the control group. Both groups of mice were fed methionine and choline deficient (MCD) diet, which induces NASH within 4 weeks. The study shows that NASH developed faster and was more severe in mice from the fat-1 group when compared to control C57BL/6 mice. This was due to enhanced lipid peroxidation of PUFA in the liver of the fat-1 mice as compared to the control group. Results of our mice study suggest that supplementing the diet of individuals who develop or have fatty livers with n-3 PUFA should be carefully considered and if recommended adequate antioxidants should be added to the diet in order to reduce such risk.
Chertok, I. R. A. ; Haile, Z. T. ; Eventov-Friedman, S. ; Silanikove, N. ; Argov-Argaman, N. Influence of gestational diabetes mellitus on fatty acid concentrations in human colostrum. Nutrition 2017, 36, 17 - 21. Publisher's VersionAbstract
Objective The aim of this study was to examine differences in fatty acid concentrations in colostrum of women with and without gestational diabetes mellitus (GDM). The effect of GDM on fatty acid composition of colostrum is not fully understood, although rates of GDM are increasing globally. Methods A prospective case–control study was conducted of postpartum women with and without GDM. Gas chromatographic analysis was conducted to examine differences in colostral fatty acids of the colostrum samples of 29 women with and 34 without GDM. Results Analyses of the fatty acid composition revealed significantly higher concentrations of four essential ω-6 polyunsaturated fatty acids—γ-linolenic, eicosatrienoic, arachidonic, and docosatetraenoic—in the colostrum of GDM women compared with non-GDM women. Timing of collection influenced saturated medium chain fatty acid and monounsaturated fatty acid levels. Conclusions Differences in concentrations of ω-6 fatty acids but not in dietary linoleic fatty acid or ω-3 fatty acids suggest that altered concentrations are attributed to changes in specific endogenous metabolic pathways. Implications of higher concentrations of ω-6 fatty acids in the colostrum of women with GDM have yet to be determined. Timing of colostrum collection is critical in determining colostral fatty acid and metabolite concentrations.
Hadaya, O. ; Landau, S. Y. ; Glasser, T. ; Muklada, H. ; Dvash, L. ; Mesilati-Stahy, R. ; Argov-Argaman, N. Milk composition in Damascus, Mamber and F1 Alpine crossbred goats under grazing or confinement management. Small Ruminant Research 2017, 153, 31 - 40. Publisher's VersionAbstract
The interactive effect of breed and feeding management on milk composition was established in local goats (Damascus, Mamber) and their F1 Alpine crossbreeds, half of which grazed daily for 4h in Mediterranean brushland (Pasture – P) and half were fed clover hay (Hay – H) indoors, in addition to concentrate fed individually. Milk composition and fatty acid profile were measured, and individual nutritional composition was estimated by fecal NIRS; DM intake was calculated from the proportion of dietary concentrate. Milk and feces were collected at 65 (pretreatment), 110, 135 and 170 days of lactation. DM intake was lower in the H vs. P group (P<0.0001) in Damascus and Damascus crossbreed (P<0.01), but not in the other breeds. The Alpine crossbreeds yielded 0.6kg more milk (P<0.001) than their local counterparts. P group yielded milk that was richer in protein (P<0.01) and fat (P<0.0001), especially in the Damascus breed. Urea concentration in milk was 66% higher in H-group of all breeds throughout the experiment (P<0.001). H goats produced milk richer in medium-chain fatty acids (P<0.001) and monounsaturated fatty acids (P<0.01) than P goats. Omega 6 was higher for P goats with a strong breed×diet interaction effect (P<0.01) in Mamber goats. The P group produced milk that was 20% richer in omega 3 than the H group (P<0.0001). In the P group of Damascus goats, low omega 6/3 ratio was found compared with H group. This study shows that breed and management interact to affect milk composition and fatty acid profile. Therefore both factors and their interaction should be considered when industry pursues means to enrich milk with bioactive, essential lipid components which can turn milk into health promoting commodity.
Cohen, B. - C. ; Raz, C. ; Shamay, A. ; Argov-Argaman, N. Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism. J Mammary Gland Biol Neoplasia 2017, 22, 235-249.Abstract
Mammary epithelial cells (MEC) secrete fat in the form of milk fat globules (MFG) which are found in milk in diverse sizes. MFG originate from intracellular lipid droplets, and the mechanism underlying their size regulation is still elusive. Two main mechanisms have been suggested to control lipid droplet size. The first is a well-documented pathway, which involves regulation of cellular triglyceride content. The second is the fusion pathway, which is less-documented, especially in mammalian cells, and its importance in the regulation of droplet size is still unclear. Using biochemical and molecular inhibitors, we provide evidence that in MEC, lipid droplet size is determined by fusion, independent of cellular triglyceride content. The extent of fusion is determined by the cell membrane's phospholipid composition. In particular, increasing phosphatidylethanolamine (PE) content enhances fusion between lipid droplets and hence increases lipid droplet size. We further identified the underlying biochemical mechanism that controls this content as the mitochondrial enzyme phosphatidylserine decarboxylase; siRNA knockdown of this enzyme reduced the number of large lipid droplets threefold. Further, inhibition of phosphatidylserine transfer to the mitochondria, where its conversion to PE occurs, diminished the large lipid droplet phenotype in these cells. These results reveal, for the first time to our knowledge in mammalian cells and specifically in mammary epithelium, the missing biochemical link between the metabolism of cellular complex lipids and lipid-droplet fusion, which ultimately defines lipid droplet size.
Meidan, R. ; Girsh, E. ; Mamluk, R. ; Levy, N. ; Farberov, S. Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges. In The Life Cycle of the Corpus Luteum; Meidan, R., Ed. The Life Cycle of the Corpus Luteum; Springer International Publishing: Cham, 2017; pp. 159–182. Publisher's VersionAbstract
It is well established that in ruminants, and in other species with estrous cycles, luteal regression is stimulated by the episodic release of prostaglandin F2$\alpha$ (PGF2$\alpha$) from the uterus, which reaches the corpus luteum (CL) through a countercurrent system between the uterine vein and the ovarian artery. Because of their luteolytic properties, PGF2$\alpha$ and its analogues are routinely administered to induce CL regression and synchronization of estrus, and as such, it is the basis of protocols for synchronizing ovulation. Luteal regression is defined as the loss of steroidogenic function (functional luteolysis) and the subsequent involution of the CL (structural luteolysis). During luteolysis, the CL undergoes dramatic changes in its steroidogenic capacity, vascularization, immune cell activation, ECM composition, and cell viability. Functional genomics and many other studies during the past 20 years elucidated the mechanism underlying PGF2$\alpha$ actions, substantially revising old concepts. PGF2$\alpha$ acts directly on luteal steroidogenic and endothelial cells, which express PGF2$\alpha$ receptors (PTGFR), or indirectly on immune cells lacking PTGFR, which can be activated by other cells within the CL. Accumulating evidence now indicates that the diverse processes initiated by uterine or exogenous PGF2$\alpha$, ranging from reduction of steroid production to apoptotic cell death, are mediated by locally produced factors. Data summarized here show that PGF2$\alpha$ stimulates luteal steroidogenic and endothelial cells to produce factors such as endothelin-1, angiopoietins, nitric oxide, fibroblast growth factor 2, thrombospondins, transforming growth factor-B1, and plasminogen activator inhibitor-B1, which act sequentially to inhibit progesterone production, angiogenic support, cell survival, and ECM remodeling to accomplish CL regression.
Yamin, G. ; Borisover, M. ; Cohen, E. ; van Rijn, J. Accumulation of humic-like and proteinaceous dissolved organic matter in zero-discharge aquaculture systems as revealed by fluorescence EEM spectroscopy. 2017, 108, 412 - 421. Publisher's VersionAbstract
Recirculating aquaculture systems (RAS), offering many economic and fish husbandry benefits, are characterized by an accumulation of dissolved organic matter (DOM) and, specifically, humic substances (HS). As reported in a number of studies, HS may affect biological activity in both invertebrates and vertebrates. Given the accumulation of HS in RAS, it is therefore of great interest to characterize DOM and, specifically, its HS fraction in the RAS. The present study was aimed at characterizing long-term changes in fluorescent DOM composition in the culture water of RAS systems, which were operated in a novel, zero water exchange mode. Two such zero-discharge recirculating systems (ZDS) were examined: a freshwater system, stocked with hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and a marine system, stocked with gilthead seabream (Sparus aurata). Excitation-emission matrices (EEMs) of fluorescence, coupled with parallel factor analysis (PARAFAC), were used to characterize and quantify the different DOM components in the ZDS. In the culture water, one tryptophan-like and four HS-like components were identified. The fluorescence intensities of three of the HS-like components as well as the tryptophan-like component increased at comparable rates during ZDS operation while a much slower accumulation of these compounds was observed in a parallel operated, flow-through, freshwater aquarium. The ZDS examined in this study comprised a sludge digestion stage where a considerable accumulation of all fluorescent components was detected. A HS-like components and a tryptophan-like component in blood of tilapia from the freshwater ZDS were similar to components found in the culture water. Blood levels of both components were higher in fish cultured in the DOM-rich ZDS than in fish raised in the control, flow-through freshwater aquarium. Fluorescence of the HS-like component found in the fish blood increased also with time of ZDS operation. The finding that fish blood contains a HS-like fluorescent component may have important implications for the understanding of the physiological effects of HS in fish and the possible benefits of these substances in aquaculture.
Azaria, S. ; Nir, S. ; van Rijn, J. Combined adsorption and degradation of the off-flavor compound 2-methylisoborneol in sludge derived from a recirculating aquaculture system. 2017, 169, 69 - 77. Publisher's VersionAbstract
Off-flavor in fish poses a serious threat for the aquaculture industry. In the present study, removal of 2-methylisoborneol (MIB), an off-flavor causing compound, was found to be mediated by adsorption and bacterial degradation in sludge derived from an aquaculture system. A numerical model was developed which augmented Langmuir equations of kinetics of adsorption/desorption of MIB with first order degradation kinetics. When laboratory-scale reactors, containing sludge from the aquaculture system, were operated in a recirculating mode, MIB in solution was depleted to undetectable levels within 6 days in reactors with untreated sludge, while its depletion was incomplete in reactors with sterilized sludge. When operated in an open flow mode, removal of MIB was significantly faster in reactors with untreated sludge. Efficient MIB removal was evident under various conditions, including ambient MIB levels, flow velocities and sludge loads. When operated in an open flow mode, the model successfully predicted steady MIB removal rates with time. During steady state conditions, most of the MIB removal was found to be due to microbial degradation of the adsorbed MIB. Findings obtained in this study can be used in the design of reactors for removal of off-flavor compounds from recirculating aquaculture systems.
Yamin, G. ; Zilberg, D. ; Levy, G. ; van Rijn, J. The protective effect of humic-rich substances from monogenean parasites infecting the guppy (Poecilia reticulata). 2017, 479, 487 - 489. Publisher's VersionAbstract
The exposure of guppy fish (Poecilia reticulata), infected with the monogenea Gyrodactylus turnbulli and Dactylogyrus sp. to humic-rich culture water and feed, reduced both the infection prevalence (% of infected fish) and the infection intensity (parasites per fish) of the two parasites. Specifically, among fish exposed to: (a) humic-rich water and sludge from a recirculating system (RAS) and (b) synthetic humic acid (HA), infection prevalences of Gyrodactylus turnbulli were 17% and 25% respectively, as compared with an infection prevalence of 52% in the control group. The lower infection prevalence was accompanied by a significant reduction in the infection intensity: from 3.8 in the control group to 0.2 and 0.3 parasites per fish in the RAS and HA treated fish respectively. The infection prevalence and intensity of Dactylogyrus sp. were significantly lower (infection prevalence: 2.5%; infection intensity: 0.3 parasites/fish) in guppies exposed to RAS water and sludge than in the control group (infection prevalence: 50%; infection intensity: 0.8 parasites/fish).
Yamin, G. ; Falk, R. ; Avtalion, R. R. ; Shoshana, N. ; Ofek, T. ; Smirnov, R. ; Rubenstein, G. ; van Rijn, J. The protective effect of humic-rich substances on atypical Aeromonas salmonicida subsp. salmonicida infection in common carp (Cyprinus carpio L.). Journal of Fish Diseases 2017, 40, 1783-1790. Publisher's VersionAbstract
Abstract When challenged with atypical Aeromonas salmonicida subsp. salmonicida, exposure of the common carp (Cyprinus carpio L.) to different humic-rich compounds resulted in a significant reduction in infection rates. Specifically, in fish exposed to (i) humic-rich water and sludge from a recirculating system, (ii) a synthetic humic acid, and (iii) a Leonardite-derived humic-rich extract, infection rates were reduced to 14.9%, 17.0% and 18.8%, respectively, as compared to a 46.8% infection rate in the control treatment. An additional set of experiments was performed to examine the effect of humic-rich components on the growth of the bacterial pathogen. Liquid culture medium supplemented with either humic-rich water from the recirculating system, the synthetic humic acid or the Leonardite humic-rich extract resulted in a growth reduction of 41.1%, 45.2% and 61.6%, respectively, as compared to the growth of the Aeromonas strain in medium devoid of humic substances. Finally, in a third set of experiments it was found that while the innate immune system of the carps was not affected by their exposure to humic-rich substances, their acquired immune system was affected. Fish, immunized against bovine serum albumin, displayed elevated antibody titres as compared to immunized carps which were not exposed to the various sources of humic substances.
Cheled-Shoval, S. ; Behrens, M. ; Korb, A. ; Di Pizio, A. ; Meyerhof, W. ; Uni, Z. ; Niv, M. Y. From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds. Molecules 2017, 22. Publisher's VersionAbstract
Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors—ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.
Yair, R. ; Cahaner, A. ; Uni, Z. ; Shahar, R. Maternal and genetic effects on broiler bone properties during incubation period. Poultry Science 2017, 96, 2301 - 2311. Publisher's VersionAbstract
In order to examine the differences in bone properties between fast-growing and slow-growing broiler embryos and to understand the effects of genotype and egg size on these differences, fast- and slow-growing hens and males were reciprocally crossed to create 4 egg groups: FST (laid by fast-growing hens, inseminated by fast-growing males), H-FST (fast-growing hens and slow-growing males), H-SLW (slow-growing hens and fast-growing males), and SLW (slow-growing hens and slow-growing males). Embryos (n = 8) from these 4 groups were sacrificed and weighed, and both tibiae were harvested on embryonic d (E) 17, 19, and 21. Left tibiae were tested for their whole-bone mechanical properties using a micromechanical device. Cortical bone structure and bone mineral density (BMD) were examined by micro-computed tomography of the left tibiae. Bone mineralization was evaluated by measuring BMD and ash content, while the rate and location of mineralization were evaluated by fluorochrome labeling. Osteoclastic activity and osteocyte density were evaluated by histological stains [TRAP (Tartrate resistant acid phosphatase) and H&E (Hematoxylin and Eosin), respectively]. Groups with larger eggs (FST and H-FST) had higher BW and tibia weight than groups with smaller eggs (SLW and H-SLW); however, they had a lower ratio of tibia weight to BW. Between groups with similar egg weight, stiffness, maximal load, and yield load of the bones were higher in the SLW than the H-SLW, while no differences were found between the FST and H-FST. Additionally, the tibiae of the SLW were stiffer and their osteocyte density higher than in the FST on E21 and their periosteal mineralization rate was higher between E19 and E21. No differences were found between the groups in cortical bone structure. This study demonstrates that faster growing hatchlings, especially those that hatch from relatively small eggs, have inferior bone mechanical properties in comparison to slower growing hatchlings, and suggests that fast-growing chicks hatching from small eggs are at a higher risk for developing bone pathologies. Accordingly, selection for increased egg size may lead to improved mechanical performance of the skeleton of fast-growing broilers.
Cheled-Shoval, S. L. ; Reicher, N. ; Niv, M. Y. ; Uni, Z. Detecting thresholds for bitter, umami, and sweet tastants in broiler chicken using a 2-choice test method. Poultry Science 2017, 96, 2206 - 2218. Publisher's VersionAbstract
The sense of taste has a key role in nutrient sensing and food intake in animals. A standardized and simple method for determination of tastant-detection thresholds is required for chemosensory research in poultry. We established a 24-h, 2-alternative, forced-choice solution-consumption method and applied it to measure detection thresholds for 3 G-protein-coupled receptor-mediated taste modalities—bitter, sweet, and umami—in chicken. Four parameters were used to determine a significant response: 1) tastant-solution consumption; 2) water (tasteless) consumption; 3) total consumption (tastant and water together); 4) ratio of tastant consumption to total consumption. Our results showed that assignment of the taste solutions and a water control to 2 bottles on random sides of the pen can be reliably used for broiler chicks, even though 47% of the chicks groups demonstrated a consistently preferred side. The detection thresholds for quinine (bitter), L-monosodium glutamate (MSG) (umami), and sucrose (sweet) were determined to be 0.3 mM, 300 mM, and 1 M, respectively. The threshold results for quinine were similar to those for humans and rodents, but the chicks were found to be less sensitive to sucrose and MSG. The described method is useful for studying detection thresholds for tastants that have the potential to affect feed and water consumption in chickens.
Schlesinger, S. ; Kaffe, B. ; Melcer, S. ; Aguilera, J. D. ; Sivaraman, D. M. ; Kaplan, T. ; Meshorer, E. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Research 2017, 45, 12181-12194. Publisher's VersionAbstract
Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the −1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic −1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.
Dishon, L. ; Avital-Cohen, N. ; Malamud, D. ; Heiblum, R. ; Druyan, S. ; Porter, T. E. ; Gumułka, M. ; Rozenboim, I. In-ovo monochromatic green light photostimulation enhances embryonic somatotropic axis activity. Poultry Science 2017, 96, 1884 - 1890. Publisher's VersionAbstract
ABSTRACT Previous studies demonstrated that in ovo photostimulation with monochromatic green light increases body weight and accelerates muscle development in broilers. The mechanism in which in ovo photostimulation accelerates growth and muscle development is not clearly understood. The objective of the current study was to define development of the somatotropic axis in the broiler embryo associated with in ovo green light photostimulation. Two-hundred-forty fertile broiler eggs were divided into 2 groups. The first group was incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\m2 at shell level, and the second group was incubated under dark conditions and served as control. In ovo green light photostimulation increased plasma growth hormone (GH) and prolactin (PRL) levels, as well as hypothalamic growth hormone releasing hormone (GHRH), liver growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-1) mRNA levels. The in ovo photostimulation did not, however, increase embryo's body weight, breast muscle weight, or liver weight. The results of this study suggest that stimulation with monochromatic green light during incubation increases somatotropic axis expression, as well as plasma prolactin levels, during embryonic development.
Gumułka, M. ; Rozenboim, I. Effect of the age of ganders on reproductive behavior and fertility in a competitive mating structure. Annals of Animal Science 2017, 17. Publisher's Version
Dishon, L. ; Avital-Cohen, N. ; Malamud, D. ; Heiblum, R. ; Druyan, S. ; Porter, T. E. ; Gumulka, M. ; Rozenboim, I. In-ovo monochromatic green light photostimulation enhances embryonic somatotropic axis activity. Poult Sci 2017, 96, 1884-1890. Publisher's VersionAbstract

Previous studies demonstrated that in ovo photostimulation with monochromatic green light increases body weight and accelerates muscle development in broilers. The mechanism in which in ovo photostimulation accelerates growth and muscle development is not clearly understood. The objective of the current study was to define development of the somatotropic axis in the broiler embryo associated with in ovo green light photostimulation. Two-hundred-forty fertile broiler eggs were divided into 2 groups. The first group was incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\m2 at shell level, and the second group was incubated under dark conditions and served as control. In ovo green light photostimulation increased plasma growth hormone (GH) and prolactin (PRL) levels, as well as hypothalamic growth hormone releasing hormone (GHRH), liver growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-1) mRNA levels. The in ovo photostimulation did not, however, increase embryo's body weight, breast muscle weight, or liver weight. The results of this study suggest that stimulation with monochromatic green light during incubation increases somatotropic axis expression, as well as plasma prolactin levels, during embryonic development.