Publications by year

<embed>

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2022
Meidan, R. ; Basavaraja, R. Interferon-Tau regulates a plethora of functions in the corpus luteum. DOMESTIC ANIMAL ENDOCRINOLOGY 2022, 78.Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL main-tenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was down-regulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro , IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal en-dothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Further-more, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro , acti-vating diverse pathways to promote cell survival while suppressing cell death signals. Pen-traxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabiliza-tion. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabiliza-tion while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy. (c) 2021 Elsevier Inc. All rights reserved.
2021
Szymanska, M. ; Shrestha, K. ; Girsh, E. ; Harlev, A. ; Eisenberg, I. ; Imbar, T. ; Meidan, R. Reduced Endothelin-2 and Hypoxic Signaling Pathways in Granulosa-Lutein Cells of PCOS Women. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Granulosa-lutein cells (GLCs) from PCOS women display reduced HIF-1 alpha and EDN2 levels, suggesting their role in PCOS etiology. Here, we investigated the mechanisms involved in aberrant EDN2 expression in PCOS, and its association with HIF-1 alpha. Various HIF-1 alpha-dependent factors were studied in GLCs from PCOS and compared to normally ovulating women. MicroRNA-210 (miR-210), its target genes (SDHD and GPD1L), and HIF-1 alpha-responsive genes (EDN2 and VEGFA) differed in GLCs from PCOS, compared with those of healthy women. Levels of miR-210-designated hypoxiamiR-and EDN2 were reduced in the PCOS GLCs; concomitantly, GPD1L and SDHD levels were elevated. Cultured GLCs retained low EDN2 expression and had low HIF-1 alpha levels, providing evidence for a disrupted hypoxic response in the PCOS GLCs. However, VEGFA expression was elevated in these cells. Next, miR-210 levels were manipulated. miR-210-mimic stimulated EDN2 twice as much as the miR-NC-transfected cells, whereas miR-210-inhibitor diminished EDN2, emphasizing the importance of hypoxiamiR for EDN2 induction. Intriguingly, VEGFA transcripts were reduced by both miR-210-mimic and -inhibitor, demonstrating that EDN2 and VEGFA are distinctly regulated. Disrupted hypoxic response in the GLCs of periovulatory follicles in PCOS women may play a role in ovulation failure, and in the reduced fertility prevalent in this syndrome.
Schmid, N. ; Dietrich, K. - G. ; Forne, I. ; Burges, A. ; Szymanska, M. ; Meidan, R. ; Mayr, D. ; Mayerhofer, A. Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1-7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.
Szymanska, M. ; Manthe, S. ; Shrestha, K. ; Girsh, E. ; Harlev, A. ; Kisliouk, T. ; Meidan, R. Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modifications. BIOLOGY OF REPRODUCTION 2021, 104, 387-398.Abstract
Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIFI A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metform in, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs. [GRAPHICS] .
Basavaraja, R. ; Drum, J. N. ; Sapuleni, J. ; Bibi, L. ; Friedlander, G. ; Kumar, S. ; Sartori, R. ; Meidan, R. Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC GENOMICS 2021, 22.Abstract
BackgroundMaintenance of the corpus luteum (CL) beyond the time of luteolysis is essential for establishing pregnancy. Identifying the distinct features of early pregnancy CL remains unresolved, hence we analyzed here the transcriptome of CL on day 18 pregnant (P) and non-pregnant (NP) cows using RNA-Seq. CL of P cows expressed ISGs, verifying exposure to the pregnancy recognition signal, interferon-tau (IFNT), whereas the CL of NP cows had elevated luteal progesterone levels, implying that luteolysis had not yet commenced.ResultsThe DEGs, IPA, and metascape canonical pathways, along with GSEA analysis, differed markedly in the CL of P cows from those of NP cows, at the same day of the cycle. Both metascape and IPA identified similar significantly enriched pathways such as interferon alpha/beta, sonic hedgehog pathway, TNFA, EDN1, TGFB1, and PDGF. However, type-1 interferon and sonic hedgehog pathways were positively enriched whereas most of the enriched pathways were downregulated in the P compared to NP samples. Thirty-four % of these pathways are known to be elevated by PGF2A during luteolysis. Notably, selective DEGs in luteinized granulosa cells were modulated by IFNT in vitro in a similar manner to their regulation in the CL of P cows.ConclusionThis study unraveled the unique transcriptomic signature of the IFNT-exposed, early pregnancy CL, highlighting the abundance of downregulated pathways known to be otherwise induced during luteolysis. These and IFNT-regulated in vitro pregnancy-specific DEGs suggest that IFNT contributes to the characteristics and maintenance of early pregnancy CL.
2020
Szymanska, M. ; Manthe, S. ; Shrestha, K. ; Girsh, E. ; Harlev, A. ; Meidan, R. The cAMP pathway promotes sirtuin-1 expression in human granulosa-lutein cells. REPRODUCTIVE BIOLOGY 2020, 20, 273-281.Abstract
Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, is present in the ovarian granulosa cells (GCs) of various species. This study examined the regulation of SIRT1 expression in human granulosa-lutein cells (hGLCs). Two different, structurally unrelated SIRT1 activators, SRT2104 and resveratrol, dose- and time-dependently enhanced SIRT1 (similar to 2- and 1.5-fold increase at 50 mu mol/L for mRNA and protein levels, respectively), whereas EX-527, an inhibitor of SIRT1 deacetylase activity, significantly suppressed SIRT1 protein induced by these activators. Transfecting cells with SIRT1 siRNA molecules efficiently silenced SIRT1 (similar to 70 % decrease in 48 h post-transfection). Furthermore, the stimulatory effects of SRT2104 on SIRT1 expression observed in non-transfected or in scrambled siRNA-transfected cells were diminished with SIRT1 silencing. The findings described above imply that SIRT1 autoregulates its own expression. Interestingly, SRT2104 elevated cAMP accumulation (1.4-fold) in the culture media of hGLCs which was further augmented in the presence of hCG (2.2-fold); these effects were evident after 12 h of incubation. This additive effect of hCG and SRT2104 on cAMP accumulation may explain the incremental outcome observed on SIRT1 expression (similar to 3-fold increase from basal level and similar to 1.6-fold stimulation for each compound alone) with these two compounds. SIRT1 knockdown diminished SIRT1 induced by forskolin, providing additional evidence that cAMP promotes SIRT1. These findings imply that by activating adenylyl cyclase (hCG or forskolin) and inhibiting phosphodiesterases (SIRT1 activators), these two signals converge to produce an incremental, positive feedback loop on SIRT1 expression. Such a mechanism highlights the importance of maintaining high SIRT1 levels in human luteinized GCs.
Basavaraja, R. ; Madusanka, S. T. ; Shrestha, K. ; Przygrodzka, E. ; Kaczmarek, M. M. ; Meidan, R. Pentraxin-3 mediates prosurvival actions of interferon tau in bovine luteinized granulosa cells. REPRODUCTION 2020, 160, 603-612.Abstract
Pentraxin 3 (PTX3), a multimeric glycoprotein, is implicated in various biological functions. PTX3 was shown to be elevated in the corpus luteum (CL) of early pregnant ewes; however, its role in sheep or other ruminants' CL during this reproductive stage or how it is regulated remain unknown. Here we explored the role of PTX3 and its relationship with interferon-tau (IFNT; the pregnancy recognition signaling molecule during early pregnancy in domestic ruminants) in bovine luteinized granulosa cells (LGCs). IFNT robustly elevated PTX3 expression in bovine LGCs, and significantly stimulated its expression in luteal endothelial cells, along with CL slices; yet, LGCs were the most responsive and sensitive among these luteal models. ALK2/ALK3/ALK6 kinase inhibitor, dorsomorphin, dose-dependently inhibited basal and IFNT-elevated PTX3 expression in LGCs. In contrast, ALK4/5/7 inhibitor, SB431542, did not alter basal and TGFB1-induced PTX3. We found that recombinant human PTX3 itself moderately but significantly increases LGC numbers. Because PTX3 is highly expressed in bovine LGCs, we next examined the impact of lowering endogenous PTX3 levels with siRNA. PTX3 silencing decreased the viable cell numbers and reversed IFNT actions on cell viability, percentage of proliferating cells, and on two key survival/death genes: BIRCS encoding surviving protein, and FASL - a death-inducing signal. Interestingly, thrombospondin-1, a known luteal proapoptotic factor, was inversely related to PTX3 in LGCs. Together, these findings suggest a novel role for PTX3 during early pregnancy, as mediator of IFNT prosurvival actions supporting CL maintenance during this reproductive stage.
2019
Basavaraja, R. ; Madusanka, S. T. ; Drum, J. N. ; Shrestha, K. ; Farberov, S. ; Wiltbank, M. C. ; Sartori, R. ; Meidan, R. Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Scientific Reports 2019, 9. Publisher's VersionAbstract
Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy. © 2019, The Author(s).
Shrestha, K. ; Rodler, D. ; Sinowatz, F. ; Meidan, R. Chapter 16 - Corpus Luteum Formation. In The Ovary (Third Edition); Leung, P. C. K. ; Adashi, E. Y., Ed. The Ovary (Third Edition); Academic Press, 2019; pp. 255 - 267. Publisher's Version
2018
Farberov, S. ; Meidan, R. Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biology of Reproduction 2018, 98, 366-375. Publisher's VersionAbstract
Thrombospondin-1 (THBS1) affects corpus luteum (CL) regression. Highly induced during luteolysis, it acts as a natural anti-angiogenic, proapoptotic compound. THBS1 expression is regulated in bovine luteal endothelial cells (LECs) by fibroblast growth factor-2 (FGF2) and transforming growth factor-beta1 (TGFB1) acting in an opposite manner. Here we sought to identify specific microRNAs (miRNAs) targeting THBS1 and investigate their possible involvement in FGF2 and TGFB1-mediated THBS1 expression. Several miRNAs predicted to target THBS1 mRNA (miR-1, miR-18a, miR-144, miR-194, and miR-221) were experimentally tested. Of these, miR-221 was shown to efficiently target THBS1 expression and function in LECs. We found that this miRNA is highly expressed in luteal cells and in mid-cycle CL. Consistent with the inhibition of THBS1 function, miR-221 also reduced Serpin Family E Member 1 [SERPINE1] in LECs and promoted angiogenic characteristics of LECs. Plasminogen activator inhibitor-1 (PAI-1), the gene product of SERPINE1, inhibited cell adhesion, suggesting that PAI-1, like THBS1, has anti-angiogenic properties. Importantly, FGF2, which negatively regulates THBS1, elevates miR-221. Conversely, TGFB1 that stimulates THBS1, significantly reduces miR-221. Furthermore, FGF2 enhances the suppression of THBS1 caused by miR-221 mimic, and prevents the increase in THBS1 induced by miR-221 inhibitor. In contrast, TGFB1 reverses the inhibitory effect of miR-221 mimic on THBS1, and enhances the upregulation of THBS1 induced by miR-221 inhibitor. These data support the contention that FGF2 and TGFB1 modulate THBS1 via miR-221. These in vitro data propose that dynamic regulation of miR-221 throughout the cycle, affecting THBS1 and SERPINE1, can modulate vascular function in the CL. © The Author(s) 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved.
Ochoa, J. C. ; Peñagaricano, F. ; Baez, G. M. ; Melo, L. F. ; Motta, J. C. L. ; Garcia-Guerra, A. ; Meidan, R. ; Pinheiro Ferreira, J. C. ; Sartori, R. ; Wiltbank, M. C. Mechanisms for rescue of corpus luteum during pregnancy: Gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins e 1 and F 2α. Biology of Reproduction 2018, 98, 465-479. Publisher's VersionAbstract
In ruminants, uterine pulses of prostaglandin (PG) F 2α characterize luteolysis, while increased PGE 2 /PGE 1 distinguish early pregnancy. This study evaluated intrauterine (IU) infusions of PGF 2α and PGE 1 pulses on corpus luteum (CL) function and gene expression. Cows on day 10 of estrous cycle received 4 IU infusions (every 6 h; n = 5/treatment) of saline, PGE 1 (2 mg PGE 1), PGF 2α (0.25 mg PGF 2α), or PGE 1 + PGF 2α. A luteal biopsy was collected at 30 min after third infusion for determination of gene expression by RNA-Seq. As expected, IU pulses of PGF 2α decreased (P < 0.01) P4 luteal volume. However, there were no differences in circulating P4 or luteal volume between saline, PGE 1, and PGE 1 + PGF 2α, indicating inhibition of PGF 2α -induced luteolysis by IU pulses of PGE 1. After third pulse of PGF 2α, luteal expression of 955 genes were altered (false discovery rate [FDR] < 0.01), representing both typical and novel luteolytic transcriptomic changes. Surprisingly, after third pulse of PGE 1 or PGE 1 + PGF 2α, there were no significant changes in luteal gene expression (FDR > 0.10) compared to saline cows. Increased circulating concentrations of the metabolite of PGF 2α (PGFM; after PGF 2α and PGE 1 + PGF 2α) and the metabolite PGE (PGEM; after PGE 1 and PGE 1 + PGF 2α) demonstrated that PGF 2α and PGE 1 are entering bloodstream after IU infusions. Thus, IU pulses of PGF 2α and PGE 1 allow determination of changes in luteal gene expression that could be relevant to understanding luteolysis and pregnancy. Unexpectedly, by third pulse of PGE 1, there is complete blockade of either PGF 2α transport to the CL or PGF 2α action by PGE 1 resulting in complete inhibition of transcriptomic changes following IU PGF 2α pulses. © The Author(s) 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail:.
Farberov, S. ; Basavaraja, R. ; Meidan, R. Thrombospondin-1 at the crossroads of corpus luteum fate decisions. Reproduction 2018.Abstract
The multimodular matricellular protein thrombospondin-1 (THBS1) was among the first identified endogenous antiangiogenic molecules. Recent studies have shown THBS1-mediated suppression of angiogenesis and other critical activities for corpus luteum (CL) regression. THBS1 is specifically induced by prostaglandin F2alpha in mature CL undergoing regression, whereas luteinizing signals such as luteinizing hormone and insulin reduced its expression. THBS1 interacts both synergistically and antagonistically with other essential luteal factors, such as fibroblast growth factor 2, transforming growth factor beta1, and serpin family E member 1, to promote vascular instability, apoptosis, and matrix remodeling during luteal regression. Expression of THBS1 is also downregulated by pregnancy recognition signals to maintain the CL during early pregnancy. This dynamic pattern of luteal expression, the extensive interactivity with other luteal factors, and strong antiangiogenic and proapoptotic activities indicate that THBS1 is a major determinant of CL fate.
Shrestha, K. ; Meidan, R. The cAMP-EPAC Pathway Mediates PGE2-Induced FGF2 in Bovine Granulosa Cells. Endocrinologyendo 2018, 159, 3482 - 3491. Publisher's VersionAbstract
During the periovulatory period, the profile of fibroblast growth factor 2 (FGF2) coincides with elevated prostaglandin E2 (PGE2) levels. We investigated whether PGE2 can directly stimulate FGF2 production in bovine granulosa cells and, if so, which prostaglandin E2 receptor (PTGER) type and signaling cascades are involved. PGE2 temporally stimulated FGF2. Accordingly, endoperoxide-synthase2–silenced cells, exhibiting low endogenous PGE2 levels, had reduced FGF2. Furthermore, elevation of viable granulosa cell numbers by PGE2 was abolished with FGF2 receptor 1 inhibitor, suggesting that FGF2 mediates this action of PGE2. Epiregulin (EREG), a known PGE2-inducible gene, was studied alongside FGF2. PTGER2 agonist elevated cAMP as well as FGF2 and EREG levels. However, a marked difference between cAMP-induced downstream signaling was observed for FGF2 and EREG. Whereas FGF2 upregulated by PGE2, PTGER2 agonist, or forskolin was unaffected by the protein kinase A (PKA) inhibitor H89, EREG was significantly inhibited. FGF2 was dose-dependently stimulated by the exchange protein directly activated by cAMP (EPAC) activator; a similar induction was observed for EREG. However, forskolin-stimulated FGF2, but not EREG, was inhibited in EPAC1-silenced cells. These findings ascribe a novel autocrine role for PGE2, namely, elevating FGF2 production in granulosa cells. This study also reveals that cAMP-activated EPAC1, rather than PKA, mediates the effect of PGE2/PTGER2 on the expression of FGF2. Stimulation of EREG by PGE2 is also mediated by PTGER2 but, in contrast to FGF2, EREG was found to be PKA sensitive. PGE2-stimulated FGF2 can act to maintain granulosa cell survival; it can also act on ovarian endothelial cells to promote angiogenesis.
Kfir, S. ; Basavaraja, R. ; Wigoda, N. ; Ben-Dor, S. ; Orr, I. ; Meidan, R. Genomic profiling of bovine corpus luteum maturation. PLOS ONE 2018, 13, e0194456 -. Publisher's VersionAbstract
To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures.
Shrestha, K. ; Onasanya, A. E. ; Eisenberg, I. ; Wigoda, N. ; Yagel, S. ; Yalu, R. ; Meidan, R. ; Imbar, T. miR-210 and GPD1L regulate EDN2 in primary and immortalized human granulosa-lutein cells. Reproduction 2018, 155, 197-205.Abstract
Endothelin-2 (EDN2), expressed at a narrow window during the periovulatory period, critically affects ovulation and corpus luteum (CL) formation. LH (acting mainly via cAMP) and hypoxia are implicated in CL formation; therefore, we aimed to elucidate how these signals regulate using human primary (hGLCs) and immortalized (SVOG) granulosa-lutein cells. The hypoxiamiR, microRNA-210 (miR-210) was identified as a new essential player in expression. Hypoxia (either mimetic compound-CoCl, or low O) elevated hypoxia-inducible factor 1A (HIF1A), miR-210 and Hypoxia-induced miR-210 was suppressed in HIF1A-silenced SVOG cells, suggesting that miR-210 is HIF1A dependent. Elevated miR-210 levels in hypoxia or by miR-210 overexpression, increased Conversely, miR-210 inhibition reduced levels, even in the presence of CoCl, indicating the importance of miR-210 in the hypoxic induction of A molecule that destabilizes HIF1A protein, glycerol-3-phosphate dehydrogenase 1-like gene-, was established as a miR-210 target in both cell types. It was decreased by miR-210-mimic and was increased by miR-inhibitor. Furthermore, reducing by endogenously elevated miR-210 (in hypoxia), miR-210-mimic or by siRNA resulted in elevated HIF1A protein and levels, implying a vital role for in the hypoxic induction of Under normoxic conditions, forskolin (adenylyl cyclase activator) triggered changes typical of hypoxia. It elevated , and miR-210 while inhibiting Furthermore, HIF1A silencing greatly reduced forskolin's ability to elevate and miR-210. This study highlights the novel regulatory roles of miR-210 and its gene target, GPD1L, in hypoxia and cAMP-induced by human granulosa-lutein cells.
2017
Basavaraja, R. ; Przygrodzka, E. ; Pawlinski, B. ; Gajewski, Z. ; Kaczmarek, M. M. ; Meidan, R. Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction 2017, 154. Publisher's Version
Farberov, S. ; Meidan, R. Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biology of Reproduction 2017, 98, 366 - 375. Publisher's VersionAbstract
Thrombospondin-1 (THBS1) affects corpus luteum (CL) regression. Highly induced during luteolysis, it acts as a natural anti-angiogenic, proapoptotic compound. THBS1 expression is regulated in bovine luteal endothelial cells (LECs) by fibroblast growth factor-2 (FGF2) and transforming growth factor-beta1 (TGFB1) acting in an opposite manner. Here we sought to identify specific microRNAs (miRNAs) targeting THBS1 and investigate their possible involvement in FGF2 and TGFB1-mediated THBS1 expression. Several miRNAs predicted to target THBS1 mRNA (miR-1, miR-18a, miR-144, miR-194, and miR-221) were experimentally tested. Of these, miR-221 was shown to efficiently target THBS1 expression and function in LECs. We found that this miRNA is highly expressed in luteal cells and in mid-cycle CL. Consistent with the inhibition of THBS1 function, miR-221 also reduced Serpin Family E Member 1 [SERPINE1] in LECs and promoted angiogenic characteristics of LECs. Plasminogen activator inhibitor-1 (PAI-1), the gene product of SERPINE1, inhibited cell adhesion, suggesting that PAI-1, like THBS1, has anti-angiogenic properties. Importantly, FGF2, which negatively regulates THBS1, elevates miR-221. Conversely, TGFB1 that stimulates THBS1, significantly reduces miR-221. Furthermore, FGF2 enhances the suppression of THBS1 caused by miR-221 mimic, and prevents the increase in THBS1 induced by miR-221 inhibitor. In contrast, TGFB1 reverses the inhibitory effect of miR-221 mimic on THBS1, and enhances the upregulation of THBS1 induced by miR-221 inhibitor. These data support the contention that FGF2 and TGFB1 modulate THBS1 via miR-221. These in vitro data propose that dynamic regulation of miR-221 throughout the cycle, affecting THBS1 and SERPINE1, can modulate vascular function in the CL.
Ochoa, J. C. ; Peñagaricano, F. ; Baez, G. M. ; Melo, L. F. ; Motta, J. C. L. ; Garcia-Guerra, A. ; Meidan, R. ; Pinheiro Ferreira, J. C. ; Sartori, R. ; Wiltbank, M. C. Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2α†. Biology of Reproductionbiolreprod 2017, 98, 465 - 479. Publisher's VersionAbstract
In ruminants, uterine pulses of prostaglandin (PG) F2α characterize luteolysis, while increased PGE2/PGE1 distinguish early pregnancy. This study evaluated intrauterine (IU) infusions of PGF2α and PGE1 pulses on corpus luteum (CL) function and gene expression. Cows on day 10 of estrous cycle received 4 IU infusions (every 6 h; n = 5/treatment) of saline, PGE1 (2 mg PGE1), PGF2α (0.25 mg PGF2α), or PGE1 + PGF2α. A luteal biopsy was collected at 30 min after third infusion for determination of gene expression by RNA-Seq. As expected, IU pulses of PGF2α decreased (P < 0.01) P4 luteal volume. However, there were no differences in circulating P4 or luteal volume between saline, PGE1, and PGE1 + PGF2α, indicating inhibition of PGF2α-induced luteolysis by IU pulses of PGE1. After third pulse of PGF2α, luteal expression of 955 genes were altered (false discovery rate [FDR] < 0.01), representing both typical and novel luteolytic transcriptomic changes. Surprisingly, after third pulse of PGE1 or PGE1 + PGF2α, there were no significant changes in luteal gene expression (FDR > 0.10) compared to saline cows. Increased circulating concentrations of the metabolite of PGF2α (PGFM; after PGF2α and PGE1 + PGF2α) and the metabolite PGE (PGEM; after PGE1 and PGE1 + PGF2α) demonstrated that PGF2α and PGE1 are entering bloodstream after IU infusions. Thus, IU pulses of PGF2α and PGE1 allow determination of changes in luteal gene expression that could be relevant to understanding luteolysis and pregnancy. Unexpectedly, by third pulse of PGE1, there is complete blockade of either PGF2α transport to the CL or PGF2α action by PGE1 resulting in complete inhibition of transcriptomic changes following IU PGF2α pulses.
Meidan, R. ; Girsh, E. ; Mamluk, R. ; Levy, N. ; Farberov, S. Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges. In The Life Cycle of the Corpus Luteum; Meidan, R., Ed. The Life Cycle of the Corpus Luteum; Springer International Publishing: Cham, 2017; pp. 159–182. Publisher's VersionAbstract
It is well established that in ruminants, and in other species with estrous cycles, luteal regression is stimulated by the episodic release of prostaglandin F2$\alpha$ (PGF2$\alpha$) from the uterus, which reaches the corpus luteum (CL) through a countercurrent system between the uterine vein and the ovarian artery. Because of their luteolytic properties, PGF2$\alpha$ and its analogues are routinely administered to induce CL regression and synchronization of estrus, and as such, it is the basis of protocols for synchronizing ovulation. Luteal regression is defined as the loss of steroidogenic function (functional luteolysis) and the subsequent involution of the CL (structural luteolysis). During luteolysis, the CL undergoes dramatic changes in its steroidogenic capacity, vascularization, immune cell activation, ECM composition, and cell viability. Functional genomics and many other studies during the past 20 years elucidated the mechanism underlying PGF2$\alpha$ actions, substantially revising old concepts. PGF2$\alpha$ acts directly on luteal steroidogenic and endothelial cells, which express PGF2$\alpha$ receptors (PTGFR), or indirectly on immune cells lacking PTGFR, which can be activated by other cells within the CL. Accumulating evidence now indicates that the diverse processes initiated by uterine or exogenous PGF2$\alpha$, ranging from reduction of steroid production to apoptotic cell death, are mediated by locally produced factors. Data summarized here show that PGF2$\alpha$ stimulates luteal steroidogenic and endothelial cells to produce factors such as endothelin-1, angiopoietins, nitric oxide, fibroblast growth factor 2, thrombospondins, transforming growth factor-B1, and plasminogen activator inhibitor-B1, which act sequentially to inhibit progesterone production, angiogenic support, cell survival, and ECM remodeling to accomplish CL regression.
Meidan, R. ; Girsh, E. ; Mamluk, R. ; Levy, N. ; Farberov, S. Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges. In The Life Cycle of the Corpus Luteum; Meidan, R., Ed. The Life Cycle of the Corpus Luteum; Springer International Publishing: Cham, 2017; pp. 159–182. Publisher's VersionAbstract
It is well established that in ruminants, and in other species with estrous cycles, luteal regression is stimulated by the episodic release of prostaglandin F2$\alpha$ (PGF2$\alpha$) from the uterus, which reaches the corpus luteum (CL) through a countercurrent system between the uterine vein and the ovarian artery. Because of their luteolytic properties, PGF2$\alpha$ and its analogues are routinely administered to induce CL regression and synchronization of estrus, and as such, it is the basis of protocols for synchronizing ovulation. Luteal regression is defined as the loss of steroidogenic function (functional luteolysis) and the subsequent involution of the CL (structural luteolysis). During luteolysis, the CL undergoes dramatic changes in its steroidogenic capacity, vascularization, immune cell activation, ECM composition, and cell viability. Functional genomics and many other studies during the past 20 years elucidated the mechanism underlying PGF2$\alpha$ actions, substantially revising old concepts. PGF2$\alpha$ acts directly on luteal steroidogenic and endothelial cells, which express PGF2$\alpha$ receptors (PTGFR), or indirectly on immune cells lacking PTGFR, which can be activated by other cells within the CL. Accumulating evidence now indicates that the diverse processes initiated by uterine or exogenous PGF2$\alpha$, ranging from reduction of steroid production to apoptotic cell death, are mediated by locally produced factors. Data summarized here show that PGF2$\alpha$ stimulates luteal steroidogenic and endothelial cells to produce factors such as endothelin-1, angiopoietins, nitric oxide, fibroblast growth factor 2, thrombospondins, transforming growth factor-B1, and plasminogen activator inhibitor-B1, which act sequentially to inhibit progesterone production, angiogenic support, cell survival, and ECM remodeling to accomplish CL regression.