Publications by year

<embed>

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

P.O. Box 12, Rehovot 76100, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2019
Schlesinger, S. ; Meshorer, E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell 2019, 48, 135-150. Publisher's VersionAbstract
Pluripotent embryonic stem cells are considered to have open and accessible chromatin relative to differentiated cells. Schlesinger and Meshorer review chromatin and epigenetic features in 2i- versus serum-grown conditions to come to a clearer picture of the genuine characteristics of pluripotency as opposed to artifacts of culture condition. © 2019 Elsevier Inc. Pluripotent embryonic stem cells (ESCs) are considered to have open and accessible chromatin relative to differentiated cells. However, as many studies supporting these conclusions relied on ESCs grown in serum, it has been suggested that some of these features are the result of culture conditions, particularly as more recent work using GSK3/MEK inhibitors (“2i”) to mimic “ground-state” conditions of the pre-implantation blastocyst observed some altered epigenetic features. Here, we systematically review chromatin and epigenetic features in 2i- and serum-grown conditions to come to a clearer picture of what are genuine characteristics of pluripotency and what open chromatin features predict pluripotency. © 2019 Elsevier Inc.
2017
Schlesinger, S. ; Kaffe, B. ; Melcer, S. ; Aguilera, J. D. ; Sivaraman, D. M. ; Kaplan, T. ; Meshorer, E. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Research 2017, 45, 12181-12194. Publisher's VersionAbstract
Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the −1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic −1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.