check
Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence

Citation:

Shimoni, C. ; Goldstein, M. ; Ribarski-Chorev, I. ; Schauten, I. ; Nir, D. ; Strauss, C. ; Schlesinger, S. . Heat Shock Alters Mesenchymal Stem Cell Identity And Induces Premature Senescence. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY 2020, 8.

Date Published:

SEP 22

Abstract:

Heat stress can have a serious impact on the health of both humans and animals. A major question is how heat stress affects normal development and differentiation at both the cellular and the organism levels. Here we use anin vitroexperimental system to address how heat shock treatment influences the properties of bovine mesenchymal stem cells (MSCs)-multipotent progenitor cells-which are found in most tissues. Because cattle are sensitive to harsh external temperatures, studying the effects of heat shock on MSCs provides a unique platform to address cellular stress in a physiologically relevant model organism. Following isolation and characterization of MSCs from the cow's umbilical cord, heat shock was induced either as a pulse (1 h) or continuously (3 days), and consequent effects on MSCs were characterized. Heat shock induced extensive phenotypic changes in MSCs and dramatically curtailed their capacity to proliferate and differentiate. These changes were associated with a partial arrest in the G1/S or G2/M checkpoints. Furthermore, MSCs lost their ability to resolve the inflammatory response of RAW macrophages in coculture. A possible explanation for this loss of function is the accumulation of reactive oxygen species and malfunction of the mitochondria in the treated cells. Heat shock treatments resulted in stress-induced premature senescence, affecting the MSCs' ability to proliferate properly for many cell passages to follow. Exposure to elevated external temperatures leads to mitochondrial damage and oxidative stress, which in turn conveys critical changes in the proliferation, differentiation, and immunomodulatory phenotype of heat-stressed MSCs. A better understanding of the effect of heat shock on humans and animals may result in important health and economic benefits.