Publications by year

<embed>

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

P.O. Box 12, Rehovot 76100, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2020
Roth, Z. ; Dvir, A. ; Furman, O. ; Lavon, Y. ; Kalo, D. ; Leitner, G. ; Wolfenson, D. Oocyte maturation in plasma or follicular fluid obtained from lipopolysaccharide-treated cows disrupts its developmental competence. Theriogenology 2020, 141, 120-127. Publisher's VersionAbstract
Mastitis has deleterious effects on ovarian function and reproductive performance. We studied the association between plasma or follicular fluid (FF) obtained from endotoxin-induced mastitic cows, and oocyte developmental competence. Lactating Holstein cows were synchronized using the Ovsynch protocol. On Day 6 of the synchronized cycle, an additional PGF2α dose was administered, and either Escherichia coli endotoxin (LPS, 10 μg; n = 3 cows) or saline (n = 3 cows) was administered to one udder quarter per cow, 36 h later. Milk samples were collected and rectal temperatures recorded. Cows treated with LPS showed a typical transient increase in body temperature (40.3 °C ± 0.4), whereas cows treated with saline maintained normal body temperature (38.9 °C ± 0.04). A higher (P < 0.05) somatic cell count was recorded for cows treated with LPS. Plasma samples were collected and FF was aspirated from the preovulatory follicles by transvaginal ultrasound probe, 6 h after LPS administration. Radioimmunoassay was performed on plasma samples to determine estradiol and cortisol concentrations. Either FF or plasma was further used as maturation medium. In the first experiment, oocytes were matured in TCM-199 (Control) or in FF aspirated from cows treated with saline (FF-Saline) or LPS (FF-LPS). Cleavage rate to the 2- to 4-cell stage embryo did not differ among groups. However, the proportion of developed blastocysts on Day 7 postfertilization in the FF-LPS group tended to be lower for that in FF-Saline and was lower (P < 0.05) than that in the Control groups (10.6 vs. 22.4 and 24.4%, respectively). In the second experiment, oocytes were matured in TCM-199 (Control), or in plasma obtained from cows treated with saline (Plasma-Saline) or LPS (Plasma-LPS). Similar to the FF findings, cleavage rate did not differ among groups; however, the proportion of developing blastocysts tended to be lower in the Plasma-LPS group than in the Plasma-Saline group and was lower (P < 0.05) from that in the Control group (11.0 vs. 25.5 and 34.7%, respectively). The proportion of apoptotic cells per blastocyst, determined by TUNEL assay, did not differ among the experimental groups. The findings shed light on the mechanism by which mastitis induces a disruption in oocyte developmental competence. Further studies are required to clarify whether the negative effect on oocyte developmental competence is a result of LPS, by itself, or due to elevation of secondary inflammatory agents. © 2019
Burow, S. ; Mizrahi, N. ; Maugars, G. ; von Krogh, K. ; Nourizadeh-Lillabadi, R. ; Hollander-Cohen, L. ; Shpilman, M. ; Atre, I. ; Weltzien, F. - A. ; Levavi-Sivan, B. Characterization of gonadotropin receptors Fshr and Lhr in Japanese medaka, Oryzias latipes. General and Comparative Endocrinology 2020, 285. Publisher's VersionAbstract
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshβα, mdLhβα, tiFshβα, tiLhβα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshβα was able to activate the mdLhr, and mdLhβα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhβα, tiFshβα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshβα, tiLhβα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshβα, mdLhβα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia. © 2019 The Authors