check
Publications | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2023
Dayan, J. ; Melkman-Zehavi, T. ; Reicher, N. ; Braun, U. ; Inhuber, V. ; Mabjeesh, S. J. ; Halevy, O. ; Uni, Z. . Supply And Demand Of Creatine And Glycogen In Broiler Chicken Embryos. Frontiers in Physiology 2023, 14. Publisher's VersionAbstract
Optimal embryonic development and growth of meat-type chickens (broilers) rely on incubation conditions (oxygen, heat, and humidity), on nutrients and on energy resources within the egg. Throughout incubation and according to the embryo’s energy balance, the main energy storage molecules (creatine and glycogen) are continuously utilized and synthesized, mainly in the embryonic liver, breast muscle, and the extraembryonic yolk sac (YS) tissue. During the last phase of incubation, as the embryo nears hatching, dynamic changes in energy metabolism occur. These changes may affect embryonic survival, hatchlings’ uniformity, quality and post hatch performance of broilers, hence, being of great importance to poultry production. Here, we followed the dynamics of creatine and glycogen from embryonic day (E) 11 until hatch and up to chick placement at the farm. We showed that creatine is stored mainly in the breast muscle while glycogen is stored mainly in the YS tissue. Analysis of creatine synthesis genes revealed their expression in the liver, kidney, YS tissue and in the breast muscle, suggesting a full synthesis capacity in these tissues. Expression analysis of genes involved in gluconeogenesis, glycogenesis, and glycogenolysis, revealed that glycogen metabolism is most active in the liver. Nevertheless, due to the relatively large size of the breast muscle and YS tissue, their contribution to glycogen metabolism in embryos is valuable. Towards hatch, post E19, creatine levels in all tissues increased while glycogen levels dramatically decreased and reached low levels at hatch and at chick placement. This proves the utmost importance of creatine in energy supply to late-term embryos and hatchlings.
Dayan, J. ; Goldman, N. ; Waiger, D. ; Melkman-Zehavi, T. ; Halevy, O. ; Uni, Z. . A Deep Learning-Based Automated Image Analysis For Histological Evaluation Of Broiler Pectoral Muscle. Poultry Science 2023, 102, 102792. Publisher's VersionAbstract
ABSTRACT Global market demand for chicken breast muscle with high yield and quality, together with the high incidence rate of breast muscle abnormalities in recent years highlights the need for tools that can provide a rapid and precise evaluation of breast muscle development and morphology. In this study, we used a novel deep learning-based automated image analysis workflow combining Fiji (ImageJ) with Cellpose and MorphoLibJ plugins to generate an automated diameter and cross-sectional area quantification for broiler breast muscle. We compared data of myofiber diameter from 14-day-old broiler chicks, generated either by manual analysis or by automated analysis. Comparison between manual and automated analysis methods exhibited a striking accuracy rate of up to 99.91%. Moreover, the automated analysis method was much faster. When the automated analysis method was implemented on 84 breast muscle cross-section images it characterized 59,128 myofibers within 4.2 h, while manual analysis of 27 breast muscle cross-section images enabled analysis of 17,333 myofibers in 54 h. The automated image analysis method was also more productive, producing data sets of both diameter and cross-sectional area at an 80-fold higher rate than the manual analysis (26,279 vs. 321 data sets per hour, respectively). In order to demonstrate the ability of this automated image analysis tool to detect differences in breast muscle histomorphology, we applied it on cross sections from chicks of control and in ovo feeding group, injected with a methionine source [2-hydroxy-4-(methylthio) butanoic calcium salt (HMTBa)], known to effect skeletal muscle histomorphology. Analysis was performed on 19,807 myofibers from the control group and 21,755 myofibers from the HMTBa group and was completed in less than 1 h. The clear advantages of this automated image analysis workflow characterized by high precision, high speed, and high productiveness demonstrate its potential to be implemented as a reproducible and readily adaptable research or diagnostic tool for chicken breast muscle development and morphology.
Dayan, J. ; Melkman-Zehavi, T. ; Goldman, N. ; Soglia, F. ; Zampiga, M. ; Petracci, M. ; Sirri, F. ; Braun, U. ; Inhuber, V. ; Halevy, O. ; et al. In-Ovo Feeding With Creatine Monohydrate: Implications For Chicken Energy Reserves And Breast Muscle Development During The Pre-Post Hatching Period. Frontiers in Physiology 2023, 14. Publisher's VersionAbstract
The most dynamic period throughout the lifespan of broiler chickens is the pre-post-hatching period, entailing profound effects on their energy status, survival rate, body weight, and muscle growth. Given the significance of this pivotal period, we evaluated the effect of in-ovo feeding (IOF) with creatine monohydrate on late-term embryos’ and hatchlings’ energy reserves and post-hatch breast muscle development. The results demonstrate that IOF with creatine elevates the levels of high-energy-value molecules (creatine and glycogen) in the liver, breast muscle and yolk sac tissues 48 h post IOF, on embryonic day 19 (p < 0.03). Despite this evidence, using a novel automated image analysis tool on day 14 post-hatch, we found a significantly higher number of myofibers with lower diameter and area in the IOF creatine group compared to the control and IOF NaCl groups (p < 0.004). Gene expression analysis, at hatch, revealed that IOF creatine group had significantly higher expression levels of myogenin (MYOG) and insulin-like growth factor 1 (IGF1), related to differentiation of myogenic cells (p < 0.01), and lower expression of myogenic differentiation protein 1 (MyoD), related to their proliferation (p < 0.04). These results imply a possible effect of IOF with creatine on breast muscle development through differential expression of genes involved in myogenic proliferation and differentiation. The findings provide valuable insights into the potential of pre-hatch enrichment with creatine in modulating post-hatch muscle growth and development.
2021
Mordechay, S. ; Smullen, S. ; Evans, P. ; Genin, O. ; Pines, M. ; Halevy, O. . Differential Effects Of Halofuginone Enantiomers On Muscle Fibrosis And Histopathology In Duchenne Muscular Dystrophy. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(-)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form's effect. No effect was observed for (-)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (-)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (-)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.
2020
Barzilai-Tutsch, H. ; Genin, O. ; Pines, M. ; Halevy, O. . Early Pathological Signs In Young Dysf(-/-) Mice Are Improved By Halofuginone. NEUROMUSCULAR DISORDERS 2020, 30, 472-482.Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf(-/-) mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf(-/-) mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf(-/-) mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life. (C) 2020 Elsevier B.V. All rights reserved.
Yablonka-Reuveni, Z. ; Stockdale, F. ; Nudel, U. ; Israeli, D. ; Blau, H. M. ; Shainberg, A. ; Neuman, S. ; Kessler-Icekson, G. ; Krull, E. M. ; Paterson, B. ; et al. Farewell To Professor David Yaffe - A Pillar Of The Myogenesis Field. EUROPEAN JOURNAL OF TRANSLATIONAL MYOLOGY 2020, 30.Abstract
It is with great sadness that we have learned about the passing of Professor David Yaffe (1929-2020, Israel). Yehi Zichro Baruch - May his memory be a blessing. David was a man of family, science and nature. A native of Israel, David grew up in the historic years that preceded the birth of the State of Israel. He was a member of the group that established Kibbutz Revivim in the Negev desert, and in 1948 participated in Israel's War of Independence. David and Ruth eventually joined Kibbutz Givat Brenner by Rehovot, permitting David to be both a kibbutz member and a life-long researcher at the Weizmann Institute of Science, where David received his PhD in 1959. David returned to the Institute after his postdoc at Stanford. Here, after several years of researching a number of tissues as models for studying the process of differentiation, David entered the myogenesis field and stayed with it to his last day. With his dedication to the field of myogenesis and his commitment to furthering the understanding of the People and the Land of Israel throughout the international scientific community, David organized the first ever myogenesis meeting that took place in Shoresh, Israel in 1975. This was followed by the 1980 myogenesis meeting at the same place and many more outstanding meetings, all of which brought together myogenesis, nature and scenery. Herein, through the preparation and publication of this current manuscript, we are meeting once again at a ``David Yaffe myogenesis meeting''. Some of us have been members of the Yaffe lab, some of us have known David as his national and international colleagues in the myology field. One of our contributors has also known (and communicates here) about David Yaffe's earlier years as a kibbutznick in the Negev. Our collective reflections are a tribute to Professor David Yaffe. We are fortunate that the European Journal of Translational Myology has provided us with tremendous input and a platform for holding this 2020 distance meeting ``Farwell to Professor David Yaffe - A Pillar of the Myogenesis Field''.
Halevy, O. . Timing Is Everything-The High Sensitivity Of Avian Satellite Cells To Thermal Conditions During Embryonic And Posthatch Periods. FRONTIERS IN PHYSIOLOGY 2020, 11.Abstract
Myofiber formation is essentially complete at hatch, but myofiber hypertrophy increases posthatch through the assimilation of satellite cell nuclei into myofibers. Satellite cell proliferation and differentiation occur during the early growth phase, which in meat-type poultry terminates at around 8 days posthatch. Thus, any factor that affects the accumulation of satellite cells during late-term embryogenesis or early posthatch will dictate long-term muscle growth. This review will focus on the intimate relationship between thermal conditions during chick embryogenesis and the early posthatch period, and satellite cell myogenesis and pectoralis growth and development. Satellite cells are highly sensitive to temperature changes, particularly when those changes occur during crucial periods of their myogenic activity. Therefore, timing, temperature, and duration of thermal treatments have a great impact on satellite cell activity and fate, affecting muscle development and growth in the long run. Short and mild thermal manipulations during embryogenesis or thermal conditioning in the early posthatch period promote myogenic cell proliferation and differentiation, and have long-term promotive effects on muscle growth. However, chronic heat stress during the first 2 weeks of life has adverse effects on these parameters and may lead to muscle myopathies.
2019
Patael, T. ; Piestun, Y. ; Soffer, A. ; Mordechay, S. ; Yahav, S. ; Velleman, S. G. ; Halevy, O. . Early Posthatch Thermal Stress Causes Long-Term Adverse Effects On Pectoralis Muscle Development In Broilers. Poultry Science 2019. Publisher's VersionAbstract
Broiler chicks in the immediate posthatch handling period are exposed to thermal stress, with potentially harmful consequences for muscle growth and structure (e.g., less protein and more fat deposition). We addressed the effects of broiler chicks' exposure to various ambient temperatures during the first 13 D posthatch on their performance, as well as on muscle development and structure, up to day 35. Body weight and pectoralis muscle growth were lower throughout the entire period in the high-heat-exposed chicks (39°C, Hot) and to a lesser extent in the mild-heat-exposed chicks (35°C, Hot Mild) than in the Control chicks that were raised under a commercial protocol. In the cold-exposed chicks (29oC, Cold), BW and pectoralis muscle absolute growth were similar to the Control group throughout the entire period. The lower body and muscle growth in the Hot and Hot Mild groups were reflected in a lower number of myonuclei expressing proliferating cell nuclear cell in pectoralis major muscle cross sections sampled on day 8, in the distribution of myofibers as the experiment progressed, and in mean myofiber diameter on day 35, whereas in the Cold group, these numbers exceeded that of the Control group. However, TUNEL assay revealed similar cell survival in all groups. Hematoxylin–eosin and Oil red O staining revealed the highest fat deposition in the pectoralis muscle derived from the Hot group, whereas lower fat deposition was observed in the Control Cold group. These results were corroborated by immunostaining for CCAAT/enhancer binding protein β in the pectoralis muscle, the levels of which were significantly higher in the Hot and Hot Mild groups on day 35 than in the Control group. Similar results were observed with Sirius red staining for collagen content in the pectoralis muscle. Together, the results imply long-term effects of chronic heat stress vs. cold stress in the early posthatch period on the broiler's body and muscle growth in general and myodegeneration of the pectoralis muscle in particular.
Wellner, G. ; Mordechay, S. ; Evans, P. ; Genin, O. ; Pines, M. ; Halevy, O. . Hydroxy Group Requirement For Halofuginone-Dependent Inhibition Of Muscle Fibrosis And Improvement Of Histopathology In The Mdx Mouse Model For Duchenne Muscular Dystrophy. Histol Histopathol. 2019, 34, 791 - 801. Publisher's Version
2018
Barzilai-Tutsch, H. ; Dewulf, M. ; Lamaze, C. ; Butler Browne, G. ; Pines, M. ; Halevy, O. . A Promotive Effect For Halofuginone On Membrane Repair And Synaptotagmin-7 Levels In Muscle Cells Of Dysferlin-Null Mice. Hum Mol Genet 2018, 27, 2817-2829.Abstract
In the absence of dysferlin, skeletal muscle cells fail to reseal properly after injury, resulting in slow progress of the dysferlinopathy muscular dystrophy (MD). Halofuginone, a leading agent in preventing fibrosis in MDs, was tested for its effects on membrane resealing post-injury. A hypo-osmotic shock assay on myotubes derived from wild-type (Wt) and dysferlin-null (dysf-/-) mice revealed that pre-treatment with halofuginone reduces the percentage of membrane-ruptured myotubes only in dysf-/- myotubes. In laser-induced injury of isolated myofibers, halofuginone decreased the amount of FM1-43 at the injury site of dysf-/- myofibers while having no effect on Wt myofibers. These results implicate halofuginone in ameliorating muscle-cell membrane integrity in dysf-/- mice. Halofuginone increased lysosome scattering across the cytosol of dysf-/- primary myoblasts, in a protein kinase/extracellular signal-regulated protein kinase and phosphoinositide 3 kinase/Akt-dependent manner, in agreement with an elevation in lysosomal exocytotic activity in these cells. A spatial- and age-dependent synaptotagmin-7 (Syt-7) expression pattern was shown in dysf-/- versus Wt mice, suggesting that these pattern alterations are related to the disease progress and that sytnaptotagmin-7 may be compensating for the lack of dysferlin at least with regard to membrane resealing post-injury. While halofuginone did not affect patch-repair-complex key proteins, it further enhanced Syt-7 levels and its spread across the cytosol in dysf-/- myofibers and muscle tissue, and increased its co-localization with lysosomes. Together, the data imply a novel role for halofuginone in membrane-resealing events with Syt-7 possibly taking part in these events.
2017
Pines, M. ; Levi, O. ; Genin, O. ; Lavy, A. ; Angelini, C. ; Allamand, V. ; Halevy, O. . Elevated Expression Of Moesin In Muscular Dystrophies. The American Journal of Pathology 2017, 187, 654 - 664. Publisher's VersionAbstract
Fibrosis is the main complication of muscular dystrophies. We identified moesin, a member of the ezrin-radixin-moesin family, in dystrophic muscles of mice representing Duchenne and congenital muscular dystrophies (DMD and CMD, respectively) and dysferlinopathy, but not in the wild type. High levels of moesin were also observed in muscle biopsy specimens from DMD, Ullrich CMD, and merosin-deficient CMD patients, all of which present high levels of fibrosis. The myofibroblasts, responsible for extracellular matrix protein synthesis, and the macrophages infiltrating the dystrophic muscles were the source of moesin. Moesin-positive cells were embedded within the fibrotic areas between the myofibers adjacent to the collagen type I fibers. Radixin was also synthesized by the myofibroblasts, whereas ezrin colocalized with the myofiber membranes. In animal models and patients' muscles, part of the moesin was in its active phosphorylated form. Inhibition of fibrosis by halofuginone, an antifibrotic agent, resulted in a major decrease in moesin levels in the muscles of DMD and CMD mice. In summary, the results of this study may pave the way for exploiting moesin as a novel target for intervention in MDs, and as part of a battery of biomarkers to evaluate treatment success in preclinical studies and clinical trials.
Piestun, Y. ; Patael, T. ; Yahav, S. ; Velleman, S. G. ; Halevy, O. . Early Posthatch Thermal Stress Affects Breast Muscle Development And Satellite Cell Growth And Characteristics In Broilers. Poultry Science 2017, 96, 2877 - 2888. Publisher's VersionAbstract
ABSTRACT Heat or cold stress, can disrupt well-being and physiological responses in birds. This study aimed to elucidate the effects of continuous heat exposure in the first 2 wk of age on muscle development in broilers, with an emphasis on the pectoralis muscle satellite cell population. Chicks were reared for 13 d under either commercial conditions or a temperature regime that was 5°C higher. Body and muscle weights, as well as absolute muscle growth were lower in heat-exposed chicks from d 6 onward. The number of satellite cells derived from the experimental chicks was higher in the heat-treated group on d 3 but lower on d 8 and 13 compared to controls. This was reflected in a lower number of myonuclei expressing proliferating nuclear cell antigen in cross sections of pectoralis major muscle sampled on d 8. However, a TUNEL assay revealed similar cell survival in both groups. Mean myofiber diameter and distribution were lower in muscle sections sampled on d 8 and 13 in heat-treated versus control group, suggesting that the lower muscle growth is due to changes in muscle hypertrophy. Oil-Red O staining showed a higher number of satellite cells with lipids in the heat-treated compared to the control group on these days. Moreover, lipid deposition was observed in pectoralis muscle cross sections derived from the heat-treated chicks on d 13, whereas the controls barely exhibited any lipid staining. The gene and protein expression levels of CCAAT/enhancer binding protein β in pectoralis muscle from the heat-treated group were significantly higher on d 13 than in controls, while myogenin levels were similar. The results suggest high sensitivity of muscle progenitor cells in the early posthatch period at a time when they are highly active, to chronic heat exposure, leading to impaired myogenicity of the satellite cells and increased fat deposition.
2016
Barzilai-Tutsch, H. ; Bodanovsky, A. ; Maimon, H. ; Pines, M. ; Halevy, O. . Halofuginone Promotes Satellite Cell Activation And Survival In Muscular Dystrophies. 2016, 1862, 1 - 11. Publisher's VersionAbstract
Halofuginone is a leading agent in preventing fibrosis and inflammation in various muscular dystrophies. We hypothesized that in addition to these actions, halofuginone directly promotes the cell-cycle events of satellite cells in the mdx and dysf−/− mouse models of early-onset Duchenne muscular dystrophy and late-onset dysferlinopathy, respectively. In both models, addition of halofuginone to freshly prepared single gastrocnemius myofibers derived from 6-week-old mice increased BrdU incorporation at as early as 18h of incubation, as well as phospho-histone H3 (PHH3) and MyoD protein expression in the attached satellite cells, while having no apparent effect on myofibers derived from wild-type mice. BrdU incorporation was abolished by an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated protein kinase, suggesting involvement of this pathway in mediating halofuginone's effects on cell-cycle events. In cultures of myofibers and myoblasts isolated from dysf−/− mice, halofuginone reduced Bax and induced Bcl2 expression levels and induced Akt phosphorylation in a time-dependent manner. Addition of an inhibitor of the phosphinositide-3-kinase/Akt pathway reversed the halofuginone-induced cell survival, suggesting this pathway's involvement in mediating halofuginone's effects on survival. Thus, in addition to its known role in inhibiting fibrosis and inflammation, halofuginone plays a direct role in satellite cell activity and survival in muscular dystrophies, regardless of the mutation. These actions are of the utmost importance for improving muscle pathology and function in muscular dystrophies.
Harding, R. L. ; Halevy, O. ; Yahav, S. ; Velleman, S. G. . The Effect Of Temperature On Proliferation And Differentiation Of Chicken Skeletal Muscle Satellite Cells Isolated From Different Muscle Types. Physiological Reports 2016, 4, e12770. Publisher's VersionAbstract
Abstract Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.