check
A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice

Citation:

Barzilai-Tutsch, H. ; Dewulf, M. ; Lamaze, C. ; Butler Browne, G. ; Pines, M. ; Halevy, O. . A Promotive Effect For Halofuginone On Membrane Repair And Synaptotagmin-7 Levels In Muscle Cells Of Dysferlin-Null Mice. Hum Mol Genet 2018, 27, 2817-2829.

Date Published:

2018 08 15

Abstract:

In the absence of dysferlin, skeletal muscle cells fail to reseal properly after injury, resulting in slow progress of the dysferlinopathy muscular dystrophy (MD). Halofuginone, a leading agent in preventing fibrosis in MDs, was tested for its effects on membrane resealing post-injury. A hypo-osmotic shock assay on myotubes derived from wild-type (Wt) and dysferlin-null (dysf-/-) mice revealed that pre-treatment with halofuginone reduces the percentage of membrane-ruptured myotubes only in dysf-/- myotubes. In laser-induced injury of isolated myofibers, halofuginone decreased the amount of FM1-43 at the injury site of dysf-/- myofibers while having no effect on Wt myofibers. These results implicate halofuginone in ameliorating muscle-cell membrane integrity in dysf-/- mice. Halofuginone increased lysosome scattering across the cytosol of dysf-/- primary myoblasts, in a protein kinase/extracellular signal-regulated protein kinase and phosphoinositide 3 kinase/Akt-dependent manner, in agreement with an elevation in lysosomal exocytotic activity in these cells. A spatial- and age-dependent synaptotagmin-7 (Syt-7) expression pattern was shown in dysf-/- versus Wt mice, suggesting that these pattern alterations are related to the disease progress and that sytnaptotagmin-7 may be compensating for the lack of dysferlin at least with regard to membrane resealing post-injury. While halofuginone did not affect patch-repair-complex key proteins, it further enhanced Syt-7 levels and its spread across the cytosol in dysf-/- myofibers and muscle tissue, and increased its co-localization with lysosomes. Together, the data imply a novel role for halofuginone in membrane-resealing events with Syt-7 possibly taking part in these events.