Publications by year


Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary


Tadmor-Levi, R. ; Borovski, T. ; Marcos-Hadad, E. ; Shapiro, J. ; Hulata, G. ; Golani, D. ; David, L. Establishing and using a genetic database for resolving identification of fish species in the Sea of Galilee, Israel. PLOS ONE 2022, 17, 1-17. Publisher's VersionAbstract
Freshwaters are a very valuable resource in arid areas, such as Mediterranean countries. Freshwater systems are vulnerable ecological habitats, significantly disturbed globally and especially in arid areas. The Sea of Galilee is the largest surface freshwater body in the Middle East. It is an isolated habitat supporting unique fish populations, including endemic species and populations on the edge of their distribution range. Using the Sea of Galilee for water supply, fishing and recreation has been placing pressure on these fish populations. Therefore, efficient monitoring and effective actions can make a difference in the conservation of these unique fish populations. To set a baseline and develop molecular tools to do so, in this study, DNA barcoding was used to establish a database of molecular species identification based on sequences of Cytochrome C Oxidase subunit I gene. DNA barcodes for 22 species were obtained and deposited in Barcode of Life Database. Among these, 12 barcodes for 10 species were new to the database and different from those already there. Barcode sequences were queried against the database and similar barcodes from the same and closely related species were obtained. Disagreements between morphological and molecular species identification were identified for five species, which were further studied by phylogenetic and genetic distances analyses. These analyses suggested the Sea of Galilee contained hybrid fish of some species and other species for which the species definition should be reconsidered. Notably, the cyprinid fish defined as Garra rufa, should be considered as Garra jordanica. Taken together, along with data supporting reconsideration of species definition, this study sets the basis for further using molecular tools for monitoring fish populations, understanding their ecology, and effectively managing their conservation in this unique and important habitat and in the region.
Meidan, R. ; Basavaraja, R. Interferon-Tau regulates a plethora of functions in the corpus luteum. DOMESTIC ANIMAL ENDOCRINOLOGY 2022, 78.Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL main-tenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was down-regulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro , IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal en-dothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Further-more, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro , acti-vating diverse pathways to promote cell survival while suppressing cell death signals. Pen-traxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabiliza-tion. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabiliza-tion while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy. (c) 2021 Elsevier Inc. All rights reserved.
Marco, A. Activity-dependent remodeling of genome architecture in engram cells facilitates memory formation and recall. Neural Regeneration Research 2022, 17, 991 - 993. Publisher's Version
Casey, T. ; Suarez-Trujillo, A. ; Cummings, S. ; Huff, K. ; Crodian, J. ; Bhide, K. ; Aduwari, C. ; Teeple, K. ; Shamay, A. ; Mabjeesh, S. ; et al. Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis. PLOS ONE 2021, 16.Abstract
The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.
Meir, Y. A. B. ; Nikbachat, M. ; Portnik, Y. ; Jacoby, S. ; Adin, G. ; Moallem, U. ; Halachmi, I. ; Miron, J. ; Mabjeesh, S. Effect of forage-to-concentrate ratio on production efficiency of low-efficient high-yielding lactating cows. ANIMAL 2021, 15.Abstract
Feed is usually the costliest input in lactating cow's farms. Therefore, the developing of methods for a better adjustment of feed intake to cow's energetic needs in order to improve efficiency is desired. The aim of this study was to improve feed efficiency of low-efficient (LE) cows through a moderate increase in diet forage-to-concentrate ratio. We studied the effects of replacing 8.2% corn grains in a control low-fiber (LF) diet that contained 17.5% forage neutral detergent fiber (NDF) with 7.5% wheat straw + 0.7% soybean meal for a high-fiber (HF) diet that contained 23.4% forage NDF. Based on efficiency data of individual cows from the Agricultural Research Organization's herd measured in our previous study, 15 pairs of pre-classified LE multiparous mid-lactating Israeli Holstein daily cows were selected, each pair with similar performance, intake, and efficiency data; each member of a pair was then adapted for 2 weeks to one or the other dietary treatment. Traits examined during the 5 weeks of the experiment were DM intake (DMI), eating behavior, milk production, in vivo digestibility, and estimation of feed efficiency (energy-corrected milk (ECM)/DMI and energy balance). Cows led the HF diet showed slower eating rate, smaller visit and meal sizes, longer daily eating time, higher visit frequency, and longer meal duration, compared to those fed the LF diet. The DMI of cows fed the HF diet was 9.1% lower, their DM digestibility decreased from 65.7 to 62.2%, and their ECM yield was 7.0% lower than in cows fed the LF diet Feed efficiency, measured as net energy captured/digestible energy intake, improved in the cows fed the HF vs. LF diet while feed efficiency measured as ECM/DMI remained similar. Our results thus show the potential of improving feed efficiency for milk production in LE cows by increasing the forage-to-concentrate ratio. (C) 2020 The Authors. Published by Elsevier Inc on behalf of The Animal Consortium.
Marvel, M. ; Levavi-Sivan, B. ; Wong, T. - T. ; Zmora, N. ; Zohar, Y. Gnrh2 maintains reproduction in fasting zebrafish through dynamic neuronal projection changes and regulation of gonadotropin synthesis, oogenesis, and reproductive behaviors. SCIENTIFIC REPORTS 2021, 11.Abstract
Restricted food intake, either from lack of food sources or endogenous fasting, during reproductive periods is a widespread phenomenon across the animal kingdom. Considering previous studies show the canonical upstream regulator of reproduction in vertebrates, the hypothalamic Gonadotropin-releasing hormone (Gnrh), is inhibited in some fasting animals, we sought to understand the neuroendocrine control of reproduction in fasted states. Here, we explore the roles of the midbrain neuropeptide, Gnrh2, in inducing reproduction via its pituitary prevalence, gonadotropin synthesis, gametogenesis, and reproductive outputs in the zebrafish model undergoing different feeding regimes. We discovered a fasting-induced four-fold increase in length and abundance of Gnrh2 neuronal projections to the pituitary and in close proximity to gonadotropes, whereas the hypothalamic Gnrh3 neurons are reduced by six-fold in length. Subsequently, we analyzed the functional roles of Gnrh2 by comparing reproductive parameters of a Gnrh2-depleted model, gnrh2(-/-), to wild-type zebrafish undergoing different feeding conditions. We found that Gnrh2 depletion in fasted states compromises spawning success, with associated decreases in gonadotropin production, oogenesis, fecundity, and male courting behavior. Gnrh2 neurons do not compensate in other circumstances by which Gnrh3 is depleted, such as in gnrh3(-/-) zebrafish, implying that Gnrh2 acts to induce reproduction specifically in fasted zebrafish.
Mordechay, S. ; Smullen, S. ; Evans, P. ; Genin, O. ; Pines, M. ; Halevy, O. Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(-)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form's effect. No effect was observed for (-)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (-)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (-)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.
Hollander-Cohen, L. ; Golan, M. ; Levavi-Sivan, B. Differential Regulation of Gonadotropins as Revealed by Transcriptomes of Distinct LH and FSH Cells of Fish Pituitary. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
From mammals to fish, reproduction is driven by luteinizing hormone (LH) and follicle-stimulating hormone (FSH) temporally secreted from the pituitary gland. Teleost fish are an excellent model for addressing the unique regulation and function of each gonadotropin cell since, unlike mammals, they synthesize and secrete LH and FSH from distinct cells. Only very distant vertebrate classes (such as fish and birds) demonstrate the mono-hormonal strategy, suggesting a potential convergent evolution. Cell-specific transcriptome analysis of double-labeled transgenic tilapia expressing GFP and RFP in LH or FSH cells, respectively, yielded genes specifically enriched in each cell type, revealing differences in hormone regulation, receptor expression, cell signaling, and electrical properties. Each cell type expresses a unique GPCR signature that reveals the direct regulation of metabolic and homeostatic hormones. Comparing these novel transcriptomes to that of rat gonadotrophs revealed conserved genes that might specifically contribute to each gonadotropin activity in mammals, suggesting conserved mechanisms controlling the differential regulation of gonadotropins in vertebrates.
Atre, I. ; Mizrahi, N. ; Hausken, K. ; Yom-Din, S. ; Hurvitz, A. ; Degani, G. ; Levavi-Sivan, B. Molecular characterization of kisspeptin receptors and gene expression analysis during oogenesis in the Russian sturgeon (Acipenser gueldenstaedtii). GENERAL AND COMPARATIVE ENDOCRINOLOGY 2021, 302.Abstract
Sturgeons belong to a subclass of fishes that derived from ray-finned fish ancestors preceding the emergence of teleosts. The Russian sturgeon (Acipenser gueldenstaedtii) is a late-maturing fish with the females reaching puberty under aquaculture conditions at 6-10 years of age. Since kisspeptin has been shown to be a key hormone involved in regulation of major reproductive processes of many vertebrate species, this study was conducted to better understand the kisspeptin receptor (KissR) in sturgeon. In this study we have cloned Russian sturgeon KissR1 from brain mRNA and observed the ontogeny of rsKissR1 mRNA expression in ovarian follicles. Multiple sequence alignment of KissR1, KissR4, and their orthologs revealed that the Russian sturgeon (rs) KissR1 sequence shares 64%-77% identity with elephant shark, coelacanth, and gar and 44-58% identity with tetrapod and teleost KissR1 sequences, while KissR4 seemed to share <65% identity to eel KissR2 and similar to 57% identity to Perciformes and Cypriniformes. Further rsKissR4 showed <97% identity to reed fish KissR4, <63% with Squamata (Reptiles) and gar KissR4. A phylogenetic analysis revealed that rsKissR1 is more closely related to coelacanth and gar KissR1 than teleost, while rsKissR4 was part of the KissR4 clade and shared higher similarity with Actinopterygiian sequences. We have further predicted homology models for both rsKiss receptors and performed in-silico analyses of their binding to a kiss-10 peptide. Both sturgeon and zebrafish Kiss1 and Kiss2 activated rsKissR1 via both PKC/Ca2+ and PKA/cAMP signal-transduction pathways, while rsKissR2 was found to be less effective and was not activated by stKiss peptides. Ovarian rsKissR transcript levels for 10 fishes were determined by real-time PCR and significantly increased concomitantly with oogenesis, where the highest level of expression was evident in black follicles. These data suggest that extra-neuronal expression of the kisspeptin receptor may be involved in sturgeon reproduction in a manner dependent on reproductive development.
Kalyesubula, M. ; Casey, T. M. ; Reicher, N. ; Sabastian, C. ; Wein, Y. ; Barshira, E. ; Hoang, N. ; George, U. Z. ; Shamay, A. ; Plaut, K. ; et al. Physiological state and photoperiod exposures differentially influence circadian rhythms of body temperature and prolactin and relate to changes in mammary PER1 expression in late pregnant and early lactation dairy goats. SMALL RUMINANT RESEARCH 2021, 200.Abstract
Short-day photoperiod (SDPP; 8 h light:16 h dark) during the dry period increases milk production compared with long-day photoperiod (LDPP; 16 h light:8 h dark). We hypothesized that the impact of photoperiod on lactation is mediated by alterations in the circadian system. Twelve Saanen goats were blocked at dry off into SDPP (n = 6) and LDPP (n = 6) treatments and mammary biopsies were taken in the middle of light and dark phases at 3 wk prepartum and 5 wk postpartum. Total RNA was isolated, and the expression of clock genes was analyzed by qPCR. SDPP goats produced more milk than LDPP goats (3.15 +/- 0.04 vs. 2.7 +/- 0.05 kg/d). In the 24 h period, LDPP goats had a greater body temperature than SDPP goats at 3 wk prepartum (39.6 +/- 0.06 vs. 39.3 +/- 0.1 degrees C) and 5 wk postpartum (40.1 +/- 0.15 vs. 39.7 +/- 0.1 degrees C). Cosinor analysis revealed that physiological state affected body temperature mesor (P< 0.001), peak (P< 0.01), amplitude (P< 0.05), and phase (P< 0.001). Plasma prolactin was 20, 10, and 17-fold higher in LDPP than in SDPP goats at 3 wk prepartum, 3 wk postpartum and 5 wk postpartum, respectively. Cosinor analysis revealed that photoperiod affected prolactin mesor (P< 0.0001), peak (P< 0.0001), trough (P< 0.001), amplitude (P< 0.01), and the peak to trough ratio (P< 0.01). Mammary expression of a core clock gene, PER1, was affected by the light-dark phase and the photoperiod treatment (P< 0.05). It also exhibited a photoperiod-physiological state interaction. Changes in the circadian rhythms with the onset of lactation and photoperiod manipulation support further studies of their role in the regulation of milk yield.
Szymanska, M. ; Shrestha, K. ; Girsh, E. ; Harlev, A. ; Eisenberg, I. ; Imbar, T. ; Meidan, R. Reduced Endothelin-2 and Hypoxic Signaling Pathways in Granulosa-Lutein Cells of PCOS Women. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Granulosa-lutein cells (GLCs) from PCOS women display reduced HIF-1 alpha and EDN2 levels, suggesting their role in PCOS etiology. Here, we investigated the mechanisms involved in aberrant EDN2 expression in PCOS, and its association with HIF-1 alpha. Various HIF-1 alpha-dependent factors were studied in GLCs from PCOS and compared to normally ovulating women. MicroRNA-210 (miR-210), its target genes (SDHD and GPD1L), and HIF-1 alpha-responsive genes (EDN2 and VEGFA) differed in GLCs from PCOS, compared with those of healthy women. Levels of miR-210-designated hypoxiamiR-and EDN2 were reduced in the PCOS GLCs; concomitantly, GPD1L and SDHD levels were elevated. Cultured GLCs retained low EDN2 expression and had low HIF-1 alpha levels, providing evidence for a disrupted hypoxic response in the PCOS GLCs. However, VEGFA expression was elevated in these cells. Next, miR-210 levels were manipulated. miR-210-mimic stimulated EDN2 twice as much as the miR-NC-transfected cells, whereas miR-210-inhibitor diminished EDN2, emphasizing the importance of hypoxiamiR for EDN2 induction. Intriguingly, VEGFA transcripts were reduced by both miR-210-mimic and -inhibitor, demonstrating that EDN2 and VEGFA are distinctly regulated. Disrupted hypoxic response in the GLCs of periovulatory follicles in PCOS women may play a role in ovulation failure, and in the reduced fertility prevalent in this syndrome.
Schmid, N. ; Dietrich, K. - G. ; Forne, I. ; Burges, A. ; Szymanska, M. ; Meidan, R. ; Mayr, D. ; Mayerhofer, A. Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2021, 22.Abstract
Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1-7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.
Forkosh, O. Animal behavior and animal personality from a non-human perspective: Getting help from the machine. PATTERNS 2021, 2.Abstract
We can now track the position of every fly's leg or immerse a tiny fish inside a virtual world by monitoring its gaze in real time. Yet capturing animals' posture or gaze is not like understanding their behavior. Instead, behaviors are still often interpreted by human observers in an anthropomorphic manner. Even newer tools that automatically classify behaviors rely on human observers for the choice of behaviors. In this perspective, we suggest a roadmap toward a ``human-free'' interpretation of behavior. We present several recent advances, including our recent work on animal personalities. Personality both underlies behavioral differences among individuals and is consistent over time. A mathematical formulation of this idea has allowed us to measure mouse traits objectively, map behaviors across species (humans included), and explore the biological basis of behavior. Our goal is to enable ``machine translation'' of raw movement data into intelligible human concepts en route to improving our understanding of animals and people.
Wong, E. A. ; Uni, Z. Centennial Review: The chicken yolk sac is a multifunctional organ. POULTRY SCIENCE 2021, 100.Abstract
The yolk sac (YS) consists of the yolk, which supplies nutrients, and the YS tissue, which surrounds the yolk and provides essential metabolic functions for the developing embryo. The YS tissue is derived from the midgut of the embryo and consists of a layer of endodermal epithelial cells (EEC) in contact with the yolk contents, a mesodermal layer that contains the vascular system and an outer ectodermal layer. The YS tissue is a multifunctional organ that provides essential functions such as host immunity, nutrient uptake, carbohydrate and lipid metabolism, and erythropoiesis. The YS tissue plays a role in immunity by the transport of maternal antibodies in the yolk to the embryonic circulation that feeds the developing embryo. In addition, the YS tissue expresses high mRNA levels of the host defense peptide, avian beta-defensin 10 during mid embryogenesis. Owing to its origin, the YS EEC share some functional properties with intestinal epithelial cells such as expression of transporters for amino acids, peptides, monosaccharides, fatty acids, and minerals. The YS tissue stores glycogen and expresses enzymes for glycogen synthesis and breakdown and glucogenesis. This carbohydrate metabolism may play an important role in the hatching process. The mesodermal layer of the YS tissue is the site for erythropoiesis and provides erythrocytes before the maturation of the bone marrow. Other functions of the YS tissue involve synthesis of plasma proteins, lipid transport and cholesterol metabolism, and synthesis of thyroxine. Thus, the YS is an essential organ for the growth, development, and health of the developing embryo. This review will provide an overview of the studies that have investigated the functionalities of the YS tissue at the cellular and molecular levels with a focus on chickens.
Gumulka, M. ; Avital-Cohen, N. ; Rozenboim, I. Determination of Annual Plasma Hormone Levels Associated with Reproduction in Long-Day Breeding Domestic Geese. ANIMALS 2021, 11.Abstract
Simple Summary In domestic birds, breeding practices and optimisation of the microenviroment and nutrition ensure egg production throughout the entire year. However, domestic geese experience an annual cycle of reproductive quiescence and recrudescence. Thus, patterns of reproductive hormones related to the initiation and termination of the breeding-laying period between the sexes seems to be especially important. This paper presents annual patterns of prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone (T), progesterone (P4), and estradiol (E2) in ganders and female geese. Long-day breeding Zatorska geese kept in controlled commercial conditions experienced periods with elevated plasma PRL levels in both sexes post-breeding and during the second half of the breeding-laying period. Increased plasma PRL levels by the end of the breeding-laying period were detected earlier in ganders than in female geese. Annual patterns of thyroid hormones (THs) were partially in agreement with existing theories on the specific role of THs in termination of breeding, which is permissive rather than causal. It may be suggested that ganders terminate their breeding-laying period one month earlier than female geese. These results may be useful in the manipulation of the endocrine axis to extend the duration of seasonal hatching egg production. This paper examines the dynamics of circulating hormone changes connected with reproduction in geese during the annual period related to gonad morphometry. One hundred geese were examined. The levels of prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone (T), progesterone (P4) and estradiol (E2) were estimated. In both sexes, PRL level patterns fit a quadratic trend with elevations in the post-breeding and the second half of the breeding-laying periods. During these periods, differences in the PRL level between sexes were noted. In ganders, increased PRL levels during the laying period occurred earlier compared to in female geese. Cubic trends for T and E2 in ganders and quadratic for T, P4, and E2 in female geese were observed. PRL was negatively correlated with T in both sexes and with P4 and E2 in female geese. A higher level of T3 and variation in T4 in ganders with a quartic trend in ganders vs. a quadratic in female geese were noted. Patterns of PRL, T, and E2 suggested that the breeding-laying period in ganders may be shorter than in female geese. These findings will be used to explore experimental manipulations of the endocrine axis to increase synchronisation of both sexes.
Santos, J. S. ; Araujo, C. S. I. ; Martins, P. C. ; Royer, A. F. B. ; Cafe, M. B. ; Andrade, M. A. ; Uni, Z. ; Stringhini, J. H. The transfer of amino acids and minerals to the egg yolk and to the yolk sac of their progeny is affected by breeder age. JOURNAL OF ANIMAL PHYSIOLOGY AND ANIMAL NUTRITION 2021.Abstract
This study aimed to assess the effects of breeder age on egg quality and amino acid and mineral transfer to the egg yolk and yolk sac of newly hatched chicks. Three ages (32, 42 and 52 weeks) of the same commercial flock of Hubbard breeders were studied. A total of 465 eggs were used for each age, with 60 being used for determining egg quality and amino acid and mineral content of yolk, and 405 for incubation period to obtain and evaluate the yolk sac of chicks. Breeders aged 52 weeks had heavier eggs and a higher percentage of yolk (p < 0.05), whereas 32-week-old breeders had higher eggshell percentage and thickness (p < 0.05). The percentage of protein deposited in egg yolk for 52-week-old breeders was higher than that for 32- and 42-week-old breeders (p < 0.05). Percentages of methionine, cysteine, met + cysteine, lysine, threonine, tryptophan, arginine and isoleucine in egg yolk for 32-week-old breeders were higher than that for 42- and 52-week-old breeders (p < 0.05). The transfer from breeder of phosphorus, potassium, calcium, magnesium, copper, iron, manganese and zinc to the yolk of eggs from 32-week-old breeders was greater than that for eggs from 42- and 52-week-old breeders (p < 0.05). Chicks from 32-week-old breeders had greater deposition of phosphorus and calcium in the yolk sac (p < 0.05). Breeder age did not affect the deposition of potassium, magnesium, copper, iron, manganese and zinc in the yolk sac of newly hatch chicks (p > 0.05). It can, however, be concluded that younger breeders deposit more amino acids and minerals in egg yolk, while embryos of older breeders seem to use the nutrients present in the yolk more efficiently during embryonic development.
Atre, I. ; Mizrahi, N. ; Levavi-Sivan, B. Characteristics of Neurokinin-3 Receptor and Its Binding Sites by Mutational Analysis. BIOLOGY-BASEL 2021, 10.Abstract
Simple Summary:& nbsp;This study presents in silico models of neurokinin B receptor tiTac3Ra (tilapia Tachykinin 3 receptor a) and its potential binding sites, as well as docking native tilapia Neurokinin F (tiNKF) and tilapia Neurokinin B (tiNKB) to theses orthosteric binding sites. For a better understanding of the binding confirmation and interaction of the structures, we compared the conformation between peptide docking and induced fit docking results. We have tried to analyze the affinity of binding and binding site interactions parallel to in-vitro results of receptor activity. NKB antagonists inhibit male tilapia gonadal development and gonadotropin release. We further verified the in-vivo effect of the antagonists on gonadal development in males. Studying the receptor activity of variants with alanine mutations at Phe251(6.44) and Met289(7.43) respectively, we found that, while both variants completely underperformed, there was no direct interaction with the ligand in the binding process indicating their role in post binding receptor activation rather than the binding process itself.
NKB (Neurokinin B) is already known to play a crucial role in fish reproduction, but little is known about the structure and function of NKB receptors. Based on an in silico model of the tilapia NKB receptor Tachykinin 3 receptor a (tiTac3Ra) found in the current study, we determined the key residues involved in binding to tilapia NKB and its functional homologue NKF (Neurokinin F). Despite studies in humans suggesting the crucial role of F251(6.44) and M289(7.43) in NKB binding, no direct peptide interaction was observed in tilapia homologs. In-silico, Ala mutations on residues F251(6.44) and M289(7.43) did not influence binding affinity, but significantly affected the stability of tiTac3Ra. Moreover, in vitro studies indicated them to be critical to tiNKB/tiNKF-induced receptor activity. The binding of NKB antagonists to tiTac3Ra both in-vitro and in vivo inhibits FSH (follicle stimulating hormone) and LH (luteinizing hormone) release and sperm production in mature tilapia males. Non-peptide NKB antagonist SB-222200 had a strong inhibitory effect on the Tac3Ra activation. SB-222200 also decreased LH plasma levels; two hours post intraperitoneal injection, changed sperm volume and the ratios of the different stages along the spermatogenesis in tilapia testes.
Ben-Nun, O. ; Kisliouk, T. ; Marco, A. ; Rosenberg, T. ; Meiri, N. Early-life thermal stress mediates long-term alterations in hypothalamic microglia. GLIA 2021.Abstract
Stressful environmental events in early life have long-lasting consequences on later stress responses. We previously showed that heat conditioning of 3-day-old chicks during the critical period of heat-response development leads to heat vulnerability later in life. Here we assessed the role of early-life heat stress on the inflammatory response in the chick anterior hypothalamus (AH), focusing on hypothalamic microglia. We identified the microglial cell population in the chick AH using anti-KUL01 and anti-CD45 antibodies. Specific microglial features were also confirmed by expression of their signature genes. Under normal environmental conditions, hypothalamic microglia isolated from lipopolysaccharide (LPS)-injected chicks displayed a classical activated proinflammatory profile accompanied by a decreased homeostatic signature, demonstrating similarity of immune response with mammalian microglial cells. In accordance with our previous observations, conditioning of 3-day-old chicks under high ambient temperature decreased the number of newborn cells in the AH, among them microglial precursors. Although heat exposure did not affect microglial cell viability, it had a long-term impact on LPS-induced inflammatory response. Exposure to harsh heat led to heat vulnerability, and attenuated recruitment of peripheral monocytes and T cells into the AH following LPS challenge. Moreover, heat conditioning altered microglial reactivity, manifested as suppressed microglial activation in response to LPS. Innate immune memory developed by heat conditioning might underlie suppression of the microglial response to LPS challenge. We describe alterations in genome-wide CpG methylation profile of hypothalamic microglia, demonstrating probable epigenetic involvement in the reprogramming of microglial function, leading to heat-induced inflammatory cross-tolerance.
Dishon, L. ; Avital-Cohen, N. ; Zaguri, S. ; Bartman, J. ; Heiblum, R. ; Druyan, S. ; Porter, T. E. ; Gumulka, M. ; Rozenboim, I. The effect of selected in ovo green light photostimulation periods on post-hatch broiler growth and somatotropic axis activity. POULTRY SCIENCE 2021, 100.Abstract
Targeted in ovo green light (GL) photostimulation during the last days of broiler egg incubation increases embryonic expression of the somatotropic axis, similar to in ovo green light photo stimulation from embryonic day (ED) 0 to the end of incubation. The aim of this study was to examine the effect of selected in ovo GL photostimulation periods on post-hatch broiler growth. Four hundred twenty fertile broiler eggs were divided into 7 treatment groups: the first incubated in the dark (standard conditions) as a negative control; the second incubated under monochromatic GL from ED0-ED20 (positive control); the third group incubated under monochromatic GL light from ED15-ED20; the fourth, fifth and sixth groups were incubated under monochromatic GL on ED16, ED17, and ED18, respectively; and the seventh group was incubated under monochromatic GL from ED18-ED20. All illumination was provided intermittently using LED lamps. After hatch, all chicks were transferred to a controlled room under standard rearing conditions. The group incubated under green light from ED18 until hatch showed similar results to the positive control group in body weights, as well as breast muscle weights (as % of body weights), and an elevation in the somatotropic axis activity during the experiment. We suggest that broiler embryos can be exposed to in ovo GL photostimulation from ED18 until hatch (hatching period), and still exhibit the same performance as obtained by photostimulation from d 0 of incubation.
Dishon, L. ; Avital-Cohen, N. ; Zaguri, S. ; Bartman, J. ; Heiblum, R. ; Druyan, S. ; Porter, T. E. ; Gumulka, M. ; Rozenboim, I. In ovo green light photostimulation during the late incubation stage affects somatotropic axis activity. POULTRY SCIENCE 2021, 100, 467-473.Abstract
Targeted green light photostimulation during the last stage of broiler incubation increases expression of the somatotropic axis. The purpose of this study was to further shorten the in ovo green light photostimulation and determine the critical age for photo stimulation in broilers embryos, as a future strategy for broiler incubation. Fertile broilers eggs (n = 420) were divided into 5 treatment groups. The first group was incubated under standard conditions (in the dark) as the negative control group. The second was incubated under intermittent monochromatic green light using light emitting diode lamps with an intensity of 0.1 W/m(2) at shell level from embryonic day (ED) 0 of incubation until hatch, as a positive control. The third, fourth, and fifth groups were incubated under intermittent monochromatic green light from ED 15, 16, and 18 of incubation, respectively, until hatch. All treatment groups showed elevated somatotropic axis expression compared with the negative control, with the group incubated under monochromatic green light from ED 18 until hatch showing results closest to the positive control. This suggests that broiler embryos can be exposed to in ovo green light photostimulation from a late stage of incubation (when transferring the eggs to the hatchery) and exhibit essentially the same outcome as obtained by photostimulation during the entire incubation period.