Publications by year


Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary


Shterzer, N. ; Rothschild, N. ; Sbehat, Y. ; Stern, E. ; Nazarov, A. ; Mills, E. Large Overlap Between the Intestinal and Reproductive Tract Microbiomes of Chickens. FRONTIERS IN MICROBIOLOGY 2020, 11.Abstract
Recent work characterized the chicken reproductive tract (oviduct) microbiome composition and its similarity to the egg and chick microbiomes. However, the origin of the oviduct microbiome has not been addressed yet. Here, we characterized the microbiome composition along the oviduct (infundibulum, magnum, and shell gland) as well as in the gut (jejunum and cecum) of broiler breeders at 37 weeks of age of the Cobb industrial breed. We found that while the microbiome composition along the oviduct is similar, the three sites, jejunum, cecum, and oviduct hold distinct microbiomes. However, there was also a large overlap in the composition of the gut and oviduct microbiomes, with 55 and 53% of amplicon sequence variants (ASVs) representing 96 and 90% of the total abundance in the jejunum and cecum, respectively, shared with the magnum. Furthermore, we identified a strong correlation between the relative abundance of ASVs in the gut and their probability to be found in the oviduct. These results suggest that material from the gut travels the full length of the oviduct. This is possibly the result of chicken physiology which includes the cloaca, a cavity to which both the intestinal and reproductive tracts open into. As the cloaca is common to birds, reptiles, amphibians, most fish, and monotremes, our finding may be relevant to many vertebrates. Importantly, these results indicate that mere presence in, and ascending of the oviduct are not virulence characteristics specific to pathogens, as commonly thought, but are the result of chicken physiology and characterize all gut bacteria. Furthermore, whereas a vertical transmission route from the hen to the chick has been suggested, our work starts laying a mechanistic foundation to this route, by describing the movement of gut bacteria to the oviduct, where they may be enclosed in the developing egg. Last, as our results show that gut material travels the full length of the oviduct, fertilization in poultry occurs in the presence of at least bacterial products if not live bacteria, and therefore food additives, probiotics, and diet possibly have a much more direct effect on reproduction and egg formation than previously considered.
Petersen, E. ; Mills, E. ; Miller, S. I. Cyclic-di-GMP regulation promotes survival of a slow-replicating subpopulation of intracellular Salmonella Typhimurium. Proceedings of the National Academy of Sciences 2019, 116, 6335. Publisher's VersionAbstract
Cyclic di-GMP is a bacterial second messenger that transmits extracellular signals to the intracellular environment via sensor cyclic-di-GMP−metabolizing enzymes. Here a fluorescent biosensor is used to accurately measure cyclic-di-GMP concentrations in thousands of individual intracellular Salmonella Typhimurium. Furthermore, three enzymes that reduce cyclic-di-GMP concentrations were identified and shown to be essential for reduction of cyclic di-GMP, intracellular survival, and full virulence for mice. This was due to cyclic-di-GMP−mediated overproduction of cellulose that specifically affected a population of slowly replicating bacteria. These results further our knowledge of mechanisms of virulence and persistence of this important pathogen.Salmonella Typhimurium can invade and survive within macrophages where the bacterium encounters a range of host environmental conditions. Like many bacteria, S. Typhimurium rapidly responds to changing environments by the use of second messengers such as cyclic di-GMP (c-di-GMP). Here, we generate a fluorescent biosensor to measure c-di-GMP concentrations in thousands of individual bacteria during macrophage infection and to define the sensor enzymes important to c-di-GMP regulation. Three sensor phosphodiesterases were identified as critical to maintaining low c-di-GMP concentrations generated after initial phagocytosis by macrophages. Maintenance of low c-di-GMP concentrations by these phosphodiesterases was required to promote survival within macrophages and virulence for mice. Attenuation of S. Typhimurium virulence was due to overproduction of c-di-GMP−regulated cellulose, as deletion of the cellulose synthase machinery restored virulence to a strain lacking enzymatic activity of the three phosphodiesterases. We further identified that the cellulose-mediated reduction in survival was constrained to a slow-replicating persister population of S. Typhimurium induced within the macrophage intracellular environment. As utilization of glucose has been shown to be required for S. Typhimurium macrophage survival, one possible hypothesis is that this persister population requires the glucose redirected to the synthesis of cellulose to maintain a slow-replicating, metabolically active state.
Katsowich, N. ; Elbaz, N. ; Pal, R. R. ; Mills, E. ; Kobi, S. ; Kahan, T. ; Rosenshine, I. Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria. Science 2017, 355, 735–739. Publisher's VersionAbstract
Escherichia coli is transformed from a commensal organism into a pathogen by acquisition of genetic elements called pathogenicity islands (PAIs). Katsowich et al. investigated how the PAI virulence genes of enteropathogenic E. coli (EPEC) respond when the bacterium attaches to a host gut cell. EPEC first sticks to the host by means of pili and then uses a PAI-encoded type 3 secretion system (T3SS) to inject multiple effectors into the host cell. But not all virulence mediators are injected. For example, CesT, a bacterial chaperone, delivers virulence effectors into the T3SS apparatus. Then, within the bacterial cytoplasm, it interacts with a gene repressor called CsrA, which reprograms bacterial gene expression to help the bacteria to adapt to epithelial cell–associated life.Science, this issue p. 735The mechanisms by which pathogens sense the host and respond by remodeling gene expression are poorly understood. Enteropathogenic Escherichia coli (EPEC), the cause of severe intestinal infection, employs a type III secretion system (T3SS) to inject effector proteins into intestinal epithelial cells. These effectors subvert host cell processes to promote bacterial colonization. We show that the T3SS also functions to sense the host cell and to trigger in response posttranscriptional remodeling of gene expression in the bacteria. We further show that upon effector injection, the effector-bound chaperone (CesT), which remains in the EPEC cytoplasm, antagonizes the posttranscriptional regulator CsrA. The CesT-CsrA interaction provokes reprogramming of expression of virulence and metabolic genes. This regulation is likely required for the pathogen’s adaptation to life on the epithelium surface.
Mills, E. ; Avraham, R. Breaking the population barrier by single cell analysis: one host against one pathogen. Current Opinion in Microbiology 2017, 36, 69 - 75. Publisher's VersionAbstract
Most of our understanding of the host–bacterium interaction has come from studies of bulk populations. In reality, highly adaptable and dynamic host cells and bacteria engage in complex, diverse interactions. This complexity necessarily limits the depth of understanding that can be gained with bulk population measurements. Here, we will review the merit of single cell analysis to characterize this diversity that can trigger heterogeneous outcomes. We will discuss heterogeneity of bacterial and host populations, differences in host microenvironments, technological advances that facilitate the analysis of rare subpopulations, and the potential relevance of these subpopulations to infection outcomes. We focus our discussion on intracellular bacterial pathogens and on methods that characterize and quantify RNA in single cells, aiming to highlight how novel methodologies have the potential to characterize the multidimensional process of infection and to provide answers to some of the most fundamental questions in the field.