Publications by year


Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary

Genomic profiling of bovine corpus luteum maturation


Kfir, S. ; Basavaraja, R. ; Wigoda, N. ; Ben-Dor, S. ; Orr, I. ; Meidan, R. Genomic profiling of bovine corpus luteum maturation. PLOS ONE 2018, 13, e0194456 -.

Date Published:



To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures.

Publisher's Version

Last updated on 07/11/2019