check
Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism

Citation:

Cohen, B. - C. ; Raz, C. ; Shamay, A. ; Argov-Argaman, N. . Lipid Droplet Fusion In Mammary Epithelial Cells Is Regulated By Phosphatidylethanolamine Metabolism. J Mammary Gland Biol Neoplasia 2017, 22, 235-249.

Date Published:

2017 12

Abstract:

Mammary epithelial cells (MEC) secrete fat in the form of milk fat globules (MFG) which are found in milk in diverse sizes. MFG originate from intracellular lipid droplets, and the mechanism underlying their size regulation is still elusive. Two main mechanisms have been suggested to control lipid droplet size. The first is a well-documented pathway, which involves regulation of cellular triglyceride content. The second is the fusion pathway, which is less-documented, especially in mammalian cells, and its importance in the regulation of droplet size is still unclear. Using biochemical and molecular inhibitors, we provide evidence that in MEC, lipid droplet size is determined by fusion, independent of cellular triglyceride content. The extent of fusion is determined by the cell membrane's phospholipid composition. In particular, increasing phosphatidylethanolamine (PE) content enhances fusion between lipid droplets and hence increases lipid droplet size. We further identified the underlying biochemical mechanism that controls this content as the mitochondrial enzyme phosphatidylserine decarboxylase; siRNA knockdown of this enzyme reduced the number of large lipid droplets threefold. Further, inhibition of phosphatidylserine transfer to the mitochondria, where its conversion to PE occurs, diminished the large lipid droplet phenotype in these cells. These results reveal, for the first time to our knowledge in mammalian cells and specifically in mammary epithelium, the missing biochemical link between the metabolism of cellular complex lipids and lipid-droplet fusion, which ultimately defines lipid droplet size.