check
Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts

Citation:

Yaacobi-Artzi, S. ; Shimoni, C. ; Kalo, D. ; Hansen, P. J. ; Roth, Z. . Melatonin Slightly Alleviates The Effect Of Heat Shock On Bovine Oocytes And Resulting Blastocysts. THERIOGENOLOGY 2020, 158, 477-489.

Date Published:

DEC

Abstract:

Heat stress is associated with increased production of reactive oxygen species (ROS) and disruption of bovine oocyte function. Here, we examined whether the antioxidant melatonin can alleviate the deleterious effects of heat stress on oocyte developmental competence. Cumulus-oocyte complexes were matured for 22 h at 38.5 degrees C (control) or for 22 h at 41.5 degrees C (heat shock) with or without 1.0 x 10(-7) M melatonin. At the end of maturation, a subgroup of oocytes was examined for nuclear and cytoplasmic maturation, ROS level and mitochondrial membrane potential. A second subgroup of oocytes underwent fertilization (18 h), and putative zygotes were cultured in an incubator equipped with a time-lapse system for similar to 190 h. Cleavage rate and the proportion of blastocysts, as well as embryo kinetics were recorded. Expanded blastocysts were collected and their transcript abundance was evaluated. Heat shock increased ROS and reduced the proportion of oocytes that resumed meiosis and reached the metaphase II stage. Exposing oocytes to heat shock with melatonin alleviated these effects to some extent, expressed by a marginal reduction in ROS level and increased proportion of metaphase-II stage oocytes. Neither the distribution of oocyte cortical granules nor polarization of the mitochondrial membrane differed between control and heat-shocked oocytes cultured with or without melatonin. Heat shock reduced the proportion of embryos that cleaved and developed to blastocysts, characterized by alterations in kinetics of the developed embryos expressed by a delay in the first cleavage, second cleavage and blastocyst formation for heat-shock vs. control groups. Melatonin did not restore the competence or kinetics of embryos developed from heat-shocked oocytes. However, expanded blastocysts developed from heat shocked oocytes treated with melatonin expressed a higher transcript abundance of genes associated with mitochondrial function, relative to the control and heat-shock group. In summary, melatonin improved the oxidative status of heat-shocked oocytes to some extent and had a beneficial effect on maternal mitochondrial transcripts in the developed blastocysts. (C) 2020 Elsevier Inc. All rights reserved.