check
Publications | Animal Sciences

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Animal Sciences
The Robert H. Smith Faculty
of Agricultural, Food & Environment

The Hebrew University of Jerusalem.

Herzl 229, Rehovot 7610001, Israel
Phone: +972-(0)8-9489119;
Fax: +972-(0)8-9465763;
Yael Lewitus, Department's Secretary
e-mail: yaellew@savion.huji.ac.il

Publications

2016
Warburton, E. M. ; Kam, M. ; Bar-Shira, E. ; Friedman, A. ; Khokhlova, I. S. ; Koren, L. ; Asfur, M. ; Geffen, E. ; Kiefer, D. ; Krasnov, B. R. ; et al. Effects Of Parasite Pressure On Parasite Mortality And Reproductive Output In A Rodent-Flea System: Inferring Host Defense Trade-Offs. 2016, 115, 3337 - 3344. Publisher's VersionAbstract
Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.
Golan, M. ; Martin, A. O. ; Mollard, P. ; Levavi-Sivan, B. . Anatomical And Functional Gonadotrope Networks In The Teleost Pituitary. 2016, 6, 23777. Publisher's VersionAbstract
Mammalian pituitaries exhibit a high degree of intercellular coordination; this enables them to mount large-scale coordinated responses to various physiological stimuli. This type of communication has not been adequately demonstrated in teleost pituitaries, which exhibit direct hypothalamic innervation and expression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in distinct cell types. We found that in two fish species, namely tilapia and zebrafish, LH cells exhibit close cell–cell contacts and form a continuous network throughout the gland. FSH cells were more loosely distributed but maintained some degree of cell–cell contact by virtue of cytoplasmic processes. These anatomical differences also manifest themselves at the functional level as evidenced by the effect of gap-junction uncouplers on gonadotropin release. These substances abolished the LH response to gonadotropin-releasing hormone stimulation but did not affect the FSH response to the same stimuli. Dye transfer between neighboring LH cells provides further evidence for functional coupling. The two gonadotropins were also found to be differently packaged within their corresponding cell types. Our findings highlight the evolutionary origin of pituitary cell networks and demonstrate how the different levels of cell–cell coordination within the LH and FSH cell populations are reflected in their distinct secretion patterns.
Golan, M. ; Hollander-Cohen, L. ; Levavi-Sivan, B. . Stellate Cell Networks In The Teleost Pituitary. 2016, 6, 24426. Publisher's VersionAbstract
The folliculostellate cells of the mammalian pituitary are non-endocrine cells that are implicated in long-distance communication and paracrine signaling, but to date, these cells have yet to be characterized in teleosts. We found that the stellate cells of the teleost pituitary share many common attributes with mammalian folliculostellate cells. By labeling of stellate cells in live preparations of tilapia pituitaries we investigated their distribution, association with other endocrine cells and their anatomical and functional coupling. In the pars intermedia, stellate cells were arranged around neuronal bundles and their processes extended into the pars distalis. Within the pars distalis, stellate cells formed close associations with FSH cells and, to a lesser degree, with GH and LH cells, suggesting differential paracrine regulation of the two gonadotrope populations. The production of follistatin by stellate cells further corroborates the notion of a paracrine role on FSH release. We also found stellate cells to form gap junctions that enabled dye transfer to neighboring stellate cells, implicating that these cells form a large-scale network that connects distant parts of the pituitary. Our findings represent the first wide-scale study of stellate cells in teleosts and provide valuable information regarding their functional roles in pituitary function.
Ogawa, S. ; Sivalingam, M. ; Biran, J. ; Golan, M. ; Anthonysamy, R. S. ; Levavi-Sivan, B. ; Parhar, I. S. . Distribution Of Lpxrfa, A Gonadotropin-Inhibitory Hormone Ortholog Peptide, And Lpxrfa Receptor In The Brain And Pituitary Of The Tilapia. Journal of Comparative NeurologyJournal of Comparative NeurologyJ. Comp. Neurol. 2016, 524, 2753 - 2775. Publisher's VersionAbstract
ABSTRACT In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753?2775, 2016. ? 2016 Wiley Periodicals, Inc.
Barzilai-Tutsch, H. ; Bodanovsky, A. ; Maimon, H. ; Pines, M. ; Halevy, O. . Halofuginone Promotes Satellite Cell Activation And Survival In Muscular Dystrophies. 2016, 1862, 1 - 11. Publisher's VersionAbstract
Halofuginone is a leading agent in preventing fibrosis and inflammation in various muscular dystrophies. We hypothesized that in addition to these actions, halofuginone directly promotes the cell-cycle events of satellite cells in the mdx and dysf−/− mouse models of early-onset Duchenne muscular dystrophy and late-onset dysferlinopathy, respectively. In both models, addition of halofuginone to freshly prepared single gastrocnemius myofibers derived from 6-week-old mice increased BrdU incorporation at as early as 18h of incubation, as well as phospho-histone H3 (PHH3) and MyoD protein expression in the attached satellite cells, while having no apparent effect on myofibers derived from wild-type mice. BrdU incorporation was abolished by an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated protein kinase, suggesting involvement of this pathway in mediating halofuginone's effects on cell-cycle events. In cultures of myofibers and myoblasts isolated from dysf−/− mice, halofuginone reduced Bax and induced Bcl2 expression levels and induced Akt phosphorylation in a time-dependent manner. Addition of an inhibitor of the phosphinositide-3-kinase/Akt pathway reversed the halofuginone-induced cell survival, suggesting this pathway's involvement in mediating halofuginone's effects on survival. Thus, in addition to its known role in inhibiting fibrosis and inflammation, halofuginone plays a direct role in satellite cell activity and survival in muscular dystrophies, regardless of the mutation. These actions are of the utmost importance for improving muscle pathology and function in muscular dystrophies.
Harding, R. L. ; Halevy, O. ; Yahav, S. ; Velleman, S. G. . The Effect Of Temperature On Proliferation And Differentiation Of Chicken Skeletal Muscle Satellite Cells Isolated From Different Muscle Types. Physiological Reports 2016, 4, e12770. Publisher's VersionAbstract
Abstract Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.
Wiegertjes, G. F. ; Lorenzen, N. ; Secombes, C. J. ; Collet, B. ; Fischer, U. ; Tafalla, C. ; Parra, D. ; Scapigliati, G. ; Boudinot, P. ; Evensen, Ø. ; et al. Targetfish - Targeted Disease Prophylaxis In European Fish Farming. Bulletin of the European Association of Fish Pathologists 2016, 36, 52 - 56. Publisher's Version
Shapira, R. ; David, L. . Genes With A Combination Of Over-Dominant And Epistatic Effects Underlie Heterosis In Growth Of Saccharomyces Cerevisiae At High Temperature. Frontiers in Genetics 2016, 7, 72. Publisher's VersionAbstract
Heterosis describes a phenotypic phenomenon of hybrid superiority over its homozygous parents. It is a genetically intriguing phenomenon with great importance for food production. Also called hybrid-vigor, heterosis is created by non-additive effects of genes in a heterozygous hybrid made by crossing two distinct homozygous parents. Few models have been proposed to explain how the combination of parental genes creates an exceptional hybrid performance. Over-dominant mode of inheritance is an attractive model since a single gene can potentially create the heterotic effect, but only a few such loci have been identified. To a collection of 120 hybrids, made by crossing 16 divergent Saccharomyces cerevisiae yeast strains, we applied a method for mapping heterozygous loci that non-additively contribute to heterotic growth at 37°. Among 803 candidate loci that were mapped, five were tested for their heterotic effect by analyzing backcrosses and F2 populations in a specific hybrid background. Consistently with the many mapped loci, specific analyses confirmed the minor heterotic effect of the tested candidate loci. Allele-replacement analyses of one gene, AEP3, further supported its heterotic effect. In addition to over-dominant effects, the contribution of epistasis to heterosis was evident from F2 population and allele-replacement analyses. Pairs of over-dominant genes contributed synergistically to heterosis. We show that minor over-dominant effects of multiple genes can combine to condition heterosis, similarly to loci affecting other quantitative traits. Furthermore, by finding of epistatic interactions between loci that each of them individually has an over-dominant effect on heterosis, we demonstrate how hybrid advantage could benefit from a synergistic combination of two interaction types (over-dominant and synergistic epistatic). Thus, by portraying the underlying genetic complexity, these findings advance our understanding of heterosis.
Lu, J. ; Argov-Argaman, N. ; Anggrek, J. ; Boeren, S. ; van Hooijdonk, T. ; Vervoort, J. ; Hettinga, K. A. . The Protein And Lipid Composition Of The Membrane Of Milk Fat Globules Depends On Their Size. 2016, 99, 4726 - 4738. Publisher's VersionAbstract
In bovine milk, fat globules (MFG) have a heterogeneous size distribution with diameters ranging from 0.1 to 15 µm. Although efforts have been made to explain differences in lipid composition, little is known about the protein composition of MFG membranes (MFGM) in different sizes of MFG. In this study, protein and lipid analyses were combined to study MFG formation and secretion. Two different sized MFG fractions (7.6±0.9 µm and 3.3±1.2 µm) were obtained by centrifugation. The protein composition of MFGM in the large and small MFG fractions was compared using mass-spectrometry-based proteomics techniques. The lipid composition and fatty acid composition of MFG was determined using HPLC-evaporative light-scattering detector and gas chromatography, respectively. Two frequently studied proteins in lipid droplet biogenesis, perilipin-2 and TIP47, were increased in the large and small MFG fractions, respectively. In the large MFG fraction, besides perilipin-2, cytoplasmic vesicle proteins (heat shock proteins, 14–3-3 proteins, and Rabs), microfilaments and intermediate filament-related proteins (actin and vimentin), host defense proteins (cathelicidins), and phosphatidylinositol were higher in concentration. On the other hand, cholesterol synthesis enzymes [lanosterol synthase and sterol-4-α-carboxylate 3-dehydrogenase (decarboxylating)], cholesterol, unsaturated fatty acids, and phosphatidylethanolamine were, besides TIP47, higher in concentration in the small MFG fraction. These results suggest that vesicle proteins, microfilaments and intermediate filaments, cholesterol, and specific phospholipids play an important role in lipid droplet growth, secretion, or both. The observations from this study clearly demonstrated the difference in protein and lipid composition between small and large MFG fractions. Studying the role of these components in more detail in future experiments may lead to a better understanding of fat globule formation and secretion.
Argov-Argaman, N. ; Hadaya, O. ; Glasser, T. ; Muklada, H. ; Dvash, L. ; Mesilati-Stahy, R. ; Landau, S. Y. . Milk Fat Globule Size, Phospholipid Contents And Composition Of Milk From Purebred And Alpine-Crossbred Mid-Eastern Goats Under Confinement Or Grazing Condition. IDF International Symposium on Sheep, Goat and other non-Cow Milk 2016, 58, 2 - 8. Publisher's VersionAbstract
Milk fat globule (MFG) size and phospholipids (PL) content and composition were determined in milk collected at 65 (pretreatment), 110, 135 and 170 days of lactation from goats randomly assigned to grazing in Mediterranean brushland or fed clover hay indoors, in addition to concentrate. Daily feed intake and dietary contents of neutral detergent fibre and acid detergent fibre were higher in grazing goats, associated with milk richer in fat, with larger MFGs and 20% higher PL content. Smaller MFGs, produced by all confinement groups, was associated with 15 μg g−1 fat higher milk PL content. The greatest effect was found in the Damascus goats, with over 44% higher PL concentration, on milk fat basis, in the confined compared with grazing group. Our understanding of how PL content is modulated by the interaction between genetic background and nutrition will enable to achieve either PL-rich milk or PL-enriched milk fat.
Lubetzky, R. ; Argov-Argaman, N. ; Mimouni, F. B. ; Armoni Domany, K. ; Shiff, Y. ; Berkovitz, Z. ; Reifen, R. ; Mandel, D. . Fatty Acids Composition Of Human Milk Fed To Small For Gestational Age Infants. The Journal of Maternal-Fetal & Neonatal MedicineThe Journal of Maternal-Fetal & Neonatal Medicine 2016, 29, 3041 - 3044. Publisher's Version
Ifrah, M. E. ; Perelman, B. ; Finger, A. ; Uni, Z. . The Role Of The Bursa Of Fabricius In The Immune Response To Vaccinal Antigens And The Development Of Immune Tolerance In Chicks (Gallus Domesticus) Vaccinated At A Very Young Age. Poultry Scienceps 2016, 96, 51 - 57. Publisher's VersionAbstract
Vaccination is recognized to be the most cost-effective means of preventing, controlling, and even eradicating infectious diseases. Conventional poultry are vaccinated through various routes including eye/nose drops, drinking water, vent brush, or injection. Efficient vaccination is an essential part of any good poultry management.The bursa of Fabricius is intimately connected to the cloaca and the intestinal system. It is well-known as a primary lymphoid organ in the chicken and a major channel through which environmental antigens stimulate the immune system. In this study we tested whether direct instillation of various viral vaccines and antigens into the cloaca (per bursam), could stimulate higher antibody titers and generate improved protection. Despite the very rapid absorption of the vaccines or antigens from the cloaca to the lumen of the Bursa of Fabricius, per bursam inoculation failed to generate a satisfactory immune response. In contrast conventional administration of live or inactivated commercial vaccines led to an acceptable level of seroconversion and protection against challenge.An interesting finding in this study was the fact that administration of a single priming dose of antigenic material at age 1 or 5 days, did not improve the response to a second administration at 14 days of age as expected. Instead, in most cases there was a reduced serum antibody response suggesting the induction of tolerance. This was true for all routes of administration (intramuscular, per ocular and per bursam) and for all formulations of vaccine.The current study reveals: 1) no advantage for direct application of live or inactivated vaccines or antigens into the bursa of Fabricius compared to common routes of vaccination, 2) that apparent desensitization or tolerance effects have important implications for poultry management, since in many countries, vaccination of day old chicks is compulsory or a well-accepted part of flock vaccination.According to our results, early vaccination can in fact reduce or inhibit a secondary immune response to subsequent vaccination and increase susceptibility to disease agents.